請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57584
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林峰輝 | |
dc.contributor.author | Chunching Li | en |
dc.contributor.author | 李淳敬 | zh_TW |
dc.date.accessioned | 2021-06-16T06:52:41Z | - |
dc.date.available | 2024-12-31 | |
dc.date.copyright | 2014-08-14 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-22 | |
dc.identifier.citation | 1. Black J, Hastings GW. Handbook of biomaterial properties. London: Chapman & Hall; 1998. xxiv, 590 p. p.
2. Markus Seibel SR, John Bilezikian. Dynamics of Bone and Cartilage Metabolism Principles and Clinical Applications. 2006. 3. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001(391 Suppl):S26-33. 4. Stoddart MJ, Grad S, Eglin D, Alini M. Cells and biomaterials in cartilage tissue engineering. Regen Med. 2009;4(1):81-98. 5. Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007;36(4-5): 539-68. 6. Ewing JW. Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy1990. 7. Williams RJ. Cartilage repair strategies. Totowa, N.J.: Humana Press; 2007. xvii, 374 p. p. 8. Clouet J, Vinatier C, Merceron C, Pot-vaucel M, Maugars Y, Weiss P, et al. From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today. 2009;14(19-20):913-25. 78 9. Mahmoudifar N, Doran PM. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials. 2005;26(34):7012-24. 10. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917-21. 11. K. A. Athanasiou EMD, J. C. Hu, . Synth. Lect. Tissue Eng. 1, 1 2009. 12. Aichroth P. Osteochondritis dissecans of the knee. A clinical survey. J Bone Joint Surg Br. 1971;53(3):440-7. 13. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis - an untreatable disease? Nat Rev Drug Discov. 2005;4(4):331-44. 14. Hameed F, Ihm J. Injectable medications for osteoarthritis. PM R. 2012;4(5 Suppl):S75-81. 15. Muller B KD. Indication for and performance of articular cartilage drilling using the Pridie method. J Bone Joint Surg Br. 1959;41:618–9. 16. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432-63. 17. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889-95. 18. Mobasheri A, Csaki C, Clutterbuck AL, Rahmanzadeh M, Shakibaei M. Mesenchymal stem cells in connective tissue engineering and regenerative 79 medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol. 2009;24(3):347-66. 19. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-6. 20. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613-27. 21. Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M. Cartilage tissue engineering. Endocr Dev. 2011;21:102-15. 22. Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol. 2012;93(6):389-400. 23. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev. 2006;58(2):300-22. 24. Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology. 2004;41(3-4):389-99. 25. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706-15. 26. Danisovic L, Varga I, Polak S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell. 2012;44(2):69-73. 27. Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta. 2013;1830(2):2470-80. 80 28. Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Gelatin-chondroitin- hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials. 2003;24(26):4853-8. 29. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A. 2009;15(2):205-19. 30. Owen SC, Shoichet MS. Design of three-dimensional biomimetic scaffolds. J Biomed Mater Res A. 2010;94(4):1321-31. 31. Chou CH, Cheng WT, Lin CC, Chang CH, Tsai CC, Lin FH. TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2006;77(2):338-48. 32. Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986;44(4):517-8. 33. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697-715. 34. Entwistle J, Hall CL, Turley EA. HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem. 1996;61(4):569-77. 35. Maniwa S, Ochi M, Motomura T, Nishikori T, Chen J, Naora H. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001;72(3):299-303. 36. Solchaga LA, Goldberg VM, Caplan AI. Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res. 2001(391 Suppl):S161-70. 81 37. Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today. 2003;69(2):174-96. 38. Kawasaki K, Ochi M, Uchio Y, Adachi N, Matsusaki M. Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. J Cell Physiol. 1999;179(2):142-8. 39. Fujimoto T, Kawashima H, Tanaka T, Hirose M, Toyama-Sorimachi N, Matsuzawa Y, et al. CD44 binds a chondroitin sulfate proteoglycan, aggrecan. Int Immunol. 2001;13(3):359-66. 40. Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res. 2000;49(4):534-41. 41. Methods in tissue engineering. San Diego: Academic Press; 2002. 42. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17(8):765-73. 43. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, et al. Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell. J Autoimmun. 2008;30(3):151-62. 82 44. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-47. 45. Beane OS, Darling EM. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng. 2012;40(10):2079-97. 46. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8. 47. Shum L, Nuckolls G. The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 2002;4(2):94-106. 48. Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev. 2009;15(1):29-41. 49. Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 2004;50(11): 3561-73. 50. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623-8. 51. Zelzer E, Olsen BR. The genetic basis for skeletal diseases. Nature. 2003;423(6937):343-8. 83 52. Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, et al. A stem cell-based approach to cartilage repair. Science. 2012;336(6082):717-21. 53. Marini JC, Forlino A. Replenishing cartilage from endogenous stem cells. N Engl J Med. 2012;366(26):2522-4. 54. Komori T. Signaling networks in RUNX2-dependent bone development. J Cell Biochem. 2011;112(3):750-5. 55. Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23(24):4211-9. 56. Wang Y, Belflower RM, Dong YF, Schwarz EM, O'Keefe RJ, Drissi H. Runx1/ AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. J Bone Miner Res. 2005;20(9):1624-36. 57. Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P, Cameron E, et al. Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival. Oncogene. 2008;27(44):5856-66. 58. Bubnis WA, Ofner CM, 3rd. The determination of epsilon-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid. Anal Biochem. 1992;207(1):129-33. 59. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Studies on gelatin- containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res. 1999;48(5):631-9. 84 60. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294-301. 61. B.Lambert J. Introduction to Organic Spectroscopy: Macmillan; 1987. 62. Michael Tatzber MS. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. Journal of Plant Nutrition and Soil Science. 2007;170(4):522-9. 63. A. N. Krasovskii KKKs. IR spectra of long-chain alkylsulfonic acids. Journal of Applied Spectroscopy. 1977;26(6):745-9. 64. Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. The Journal of orthopaedic and sports physical therapy. 1998;28(4):241-51. 65. Seda Tigli R, Ghosh S, Laha MM, Shevde NK, Daheron L, Gimble J, et al. Comparative chondrogenesis of human cell sources in 3D scaffolds. Journal of tissue engineering and regenerative medicine. 2009;3(5):348-60. 66. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97(1):33-44. 67. Lairson LL, Lyssiotis CA, Zhu S, Schultz PG. Small molecule-based approaches to adult stem cell therapies. Annual review of pharmacology and toxicology. 2013;53:107-25. 85 68. Maleski MP, Knudson CB. Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis. Experimental cell research. 1996;225(1):55-66. 69. Wang CY, Chen LL, Kuo PY, Chang JL, Wang YJ, Hung SC. Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements. Apoptosis : an international journal on programmed cell death. 2010;15(4):439-49. 70. Lu CH, Lin KJ, Chiu HY, Chen CY, Yen TC, Hwang SM, et al. Improved chondrogenesis and engineered cartilage formation from TGF-beta3- expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue engineering Part A. 2012;18(19-20):2114-24. 71. Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, et al. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells, tissues, organs. 2010;192(3): 158-66. 72. Lien CY, Lee OK, Su Y. Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation. Stem cells. 2007;25(6):1462-8. 73. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes & development. 2001;15(4):467-81. 86 74. Yoshida N, Ogata T, Tanabe K, Li S, Nakazato M, Kohu K, et al. Filamin A- bound PEBP2beta/CBFbeta is retained in the cytoplasm and prevented from functioning as a partner of the Runx1 transcription factor. Molecular and cellular biology. 2005;25(3):1003-12. 75. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(7): 4397-402. 76. Krause WJ. Krause's Essential Human Histology For Medicial Students. 3rd ed. Florida: Universal Publishers; 2005. 77. Kafienah TPW. Cartilage Tissue Engineering Using Embryonic Stem Cells: Elsevier B.V.; 2011. 78. Mol NJ, Fischer MJE, SpringerLink (Online service). Surface Plasmon Resonance Methods and Protocols. Totowa, NJ: Springer Science+Business Media, LLC; 2010. 79. McGinnes K, Chapman G, Marks R, Penny R. A fluorescence NK assay using flow cytometry. Journal of immunological methods. 1986;86(1):7-15.  | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57584 | - |
dc.description.abstract | 相較於硬骨於體內之自然修復能力,自體修復之軟骨無法回復受損前的組 織功能。小範圍的軟骨缺損若無法即早修復,其將導致嚴重之關節炎疾病。然目 前臨床上之治療方式,皆無法根本性的修補軟骨缺損。
時至今日,軟骨組織工程之研究,仍未有適用於生物反應器之最佳組合。 明膠/玻尿酸/軟骨素三共聚物已於過去的研究展示其能維持軟骨細胞之型態。本 研究中,將使用間質性幹細胞做為軟骨組織工程之細胞來源,播種間質性幹細胞 於三共聚物支架,並結合誘導幹細胞軟骨分化之小分子藥物 Kartogenin ,作為 分化訊號。 於生物反應器培養 21 日後,本組合成功產生俱軟骨特性之構物。其軟骨相 關基因包含: Aggrecan 、︑ SOX9 以及 Col2a1 皆有顯著性之上昇,此外聚集之軟 骨性團塊可於掃描式電子顯微鏡下檢視,而其組織切片亦能發現類似軟骨陷窩之 結構。於免疫染色中,亦可檢視到軟骨蛋白聚醣 (aggrecan) 以及第二型膠原蛋白 (type II collagen) 表現。 相較於傳統上使用蛋白質誘發分化,使用小分子藥物於培養基消耗量大之 生物反應器為一較俱臨床可行性之選項。本研究以明膠/玻尿酸/軟骨素、 KGN 以及間質性幹細胞之組合提供了小分子藥物調控幹細胞之一範例。 | zh_TW |
dc.description.abstract | Contrary to the capability of bone repair, the cartilage regeneration in body couldn’t recover the cartilage lesions to proper function, and the failure of small defect repairing could lead to severe osteoarthritis disease. However, current clinical treatment options are not satisfying to fully recover the lesions.
Till now, there is no optimized combination of scaffold and signal for cartilage tissue engineering in bioreactor system. Previously we have demonstrated tri- copolymer composed of gelatin, hyaluronic acid and chondroitin-6-sulfate can retain the phenotype of chondrocyte. In this study we demonstrated the combination of mesenchymal stem cells (MSCs) with tri-copolymer and Kartogenin (KGN) , a small molecule drug which promotes MSCs toward chondrogenetic differentiation. The combination successfully induced the chondrogenesis. After 21 days culture in homemade perfusion bioreactor system, the construct shows chondrogenetic characteristic in both genetic and morphology aspect. Aggrecan, Sox-9 and Col2a1 are all up-regulated, and the condensed cell mass are found in the porous scaffold structure. The lacunae-like structure were also found by Hematoxylin/Eosin staining. Since culturing in the bioreactor with cytokine or growth factor is impractical due to its need for great amount of medium, culturing with small molecule has become much more feasible. We expect that this research provides an example for small molecule regulated practice and thus provide a new combination for cartilage tissue engineering. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:52:41Z (GMT). No. of bitstreams: 1 ntu-103-R01548007-1.pdf: 22062717 bytes, checksum: 6dc87f8821b4c674fca0af8037eda876 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 摘 要 ........I
Abstract........II 目 錄 ............III 圖目錄..........VII 表目錄...........IX 縮寫表...........X 第一章 簡介 1-1 軟骨:結構、組成與功能.......1 1-1-1 關節軟骨:結構與組成........................................1 1-1-2 關節軟骨:代謝 .................................4 1-2 軟骨損傷與機轉:以分離性骨軟骨炎與骨關節炎為例...................................5 1-3 軟骨損傷之治療...............................8 1-3-1 注射式治療...................................................................8 1-3-2 鑽孔 .............................8 1-3-3 自體骨軟骨移植 .............................................................9 1-3-4 自體軟骨細胞移植 ........................................9 1-4 關節軟骨之組織工程方法...............................................10 1-4-1 支架 .......................................................................10 1-4-2 細胞 ...........................................................................11 1-4-3 訊號 ....................................................................................13 1-4-4 生物反應器...............................................13 1-5 研究目的.................................................15 第二章 理論基礎 2-1 關節軟骨組織工程支架:明膠/透明質酸/軟骨素共聚物..................16 2-1-1 由軟骨細胞外基質衍生之立體海綿狀支架 .................................16 2-1-2 明膠/透明質酸/軟骨素三共聚物.................................................17 2-2 關節軟骨組織工程:細胞-間質性幹細胞 .......................19 2-2-1 間質性幹細胞用於軟骨組織工程...........................................19 2-2-2 軟骨分化.........................................................................21 2-3 關節軟骨組織工程:訊號 - Kartogenin ..........................23 2-4 封閉式生物反應器............................................26 第三章 材料與方法 3-1 實驗架構................................................................27 3-2 實驗儀器.......................................................................28 3-3 實驗藥品.....................................................................................29 3-4 實驗方法...........................................................30 3-4-1 明膠/透明質酸/軟骨素三共聚物之製備 ..................................30 3-4-2 明膠/透明質酸/軟骨素三共聚物材料分析 .....................................31 3-4-2-1 以掃描式電子顯微鏡觀測材料微結構 ..................31 3-4-2-2 壓汞儀孔隙度分析......................................31 3-4-2-3 交聯度分析 ........................................31 3-4-2-4 傅氏紅外線吸收光譜...............................32 3-4-3 間質幹細胞..............................................33 3-4-3-1 間質幹細胞的分離與培養 ......................................33 3-4-3-2 細胞標記之測定..........................................................34 3-4-3-3 KGN分化效果檢測..............................34 3-4-4 細胞播種於明膠/透明質酸/軟骨素三共聚物及培養 ..................35 3-4-5 細胞支架複合體分析....................................35 3-4-5-1 細胞存活染色 ................................................35 3-4-5-2 硫化醣胺多醣定量分析....................................36 3-4-5-3 基因表現檢視 - 即時聚合酶鏈式反應................................37 3-4-5-4 組織學結構研究..................................................40 3-5 統計方法..............................................................41 第四章 結果 4-1 明膠/透明質酸/軟骨素三共聚物材料分析..................42 4-1-1 明膠/透明質酸/軟骨素三共聚物之微結構 ........................42 4-1-2 三共聚物交聯度量測....................................................45 4-1-3 三共聚物於交聯後之官能基分析......................45 4-2 幹細胞族群確立與 KGN 分化效果檢測 ............................47 4-2-1 幹細胞標記分析 ....................................47 4-2-2 軟骨形成 (Chondrogenesis) 檢視..................................47 4-2-2-1 於平面培養下幹細胞聚集檢視............................................47 4-2-2-2 於平面培養下之基因表現 ...................................49 4-3 幹細胞於明膠/透明質酸/軟骨素三共聚物支架之分化...................52 4-3-1 於三共聚物內培養下之細胞聚集.............................52 4-3-2 於三共聚物中培養之基因表現 ...................................52 4-4 三共聚物與幹細胞共構物於生物反應器之分化........................55 4-4-1 基因檢視:軟骨及肥大軟骨細胞相關基因......................55 4-4-2 以掃描式電子顯微鏡檢視細胞於三共聚內之型態...................59 4-4-3 三共聚物與細胞共構物之組織切片檢視..................................61 4-4-4 以免疫染色檢視軟骨特徵蛋白表現.......................................63 4-4-4 硫化醣胺多醣於細胞團塊之表現.............................................65 第五章 討論 5-1 軟骨缺損初期之修復及挑戰...................................................67 5-2 間質性幹細胞之軟骨形成作用與三共聚物材料.........................69 5-2-1 間質性幹細胞之軟骨形成作用 .................................................69 5-2-2 Kartogenin 作為軟骨分化訊號..................................69 5-2-3 軟骨形成作用與三共聚物材料 ...............................................70 5-3 三共聚物與細胞共構物之長期培養.........................71 5-3-1 間質性幹細胞之軟骨肥大特性 .......................................71 5-3-2 Kartogenin 與軟骨肥大............................................71 5-3-3 於生物反應器培養之結果.....................................73 5-3-3-1 基因表現層面 ..................................................73 5-3-3-2 組織學檢視 .......................................................................73 5-3-3-3 GAGs 之分泌 ....................................................................74 5-4 本研究之未來展望............................................75 5-4-1 動物模型之驗證 ........................................................................75 5-4-2 小規模軟骨損傷之修復.........................................................75 第六章 結論..........................................................77 參考文獻 ............................................................78 | |
dc.language.iso | zh-TW | |
dc.title | 明膠/玻尿酸/軟骨素三共聚物於間質性幹細胞之軟骨組織工程應用 | zh_TW |
dc.title | Application of Gelatin/Hyaluronic Acid/ Chondroitin-6-Sulfate Tri-copolymer on MSCs Based Cartilage Tissue Engineering | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 孫瑞昇 | |
dc.contributor.oralexamcommittee | 楊禎明,徐善慧,張國基 | |
dc.subject.keyword | 軟骨組織工,幹細胞,明膠/玻尿酸/軟骨素三共聚物, | zh_TW |
dc.subject.keyword | Cartilage tissue engineering,mesenchymal stem cells,gelatin/hyaluronic acid/ chondroitin-6-sulfate tri-copolyemer, | en |
dc.relation.page | 88 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 21.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。