請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57567完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張尊國(Tsun-Kuo Chang) | |
| dc.contributor.author | Sheng-Chi Lin | en |
| dc.contributor.author | 林聖淇 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:51:51Z | - |
| dc.date.available | 2014-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-22 | |
| dc.identifier.citation | References
Abedin M.J., Cresser M.S., Meharg A.A., Feldmann J. and Howells J.C. 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. Vol. 36, pp. 962-968. Adriano D.C. 2001. Trace Elements in Terrestrial Environments 2nd ed. New York: Springer, pp. 867. Alam Z., and Rahman M. 2003. Accumulation of arsenic in rice plant from arsenic contaminated irrigation water and effect on nutrition content. In:Ahmed F, Ashraf A M, Adeel Z. Fate of Arsenic in the Environment. Tokyo: Bangladesh University of Engineering and Technology, Dhaka and United Nations University. pp. 131-135. Anawar H.M., Akai J., Mostofa K.M., Safiullah S. and Tareq S.M. 2002. Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ. Int. Vol. 27, pp. 597-604. Andreae M.O. and Andreae T.W. 1989. Dissolved arsenic species in the Schelde estuary and watershed, Belgium. Estuar. Coast. Shelf Sci. Vol. 29, pp. 421–433. Azcue J.M. and Nriagu J.O. 1995. Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. J. Geochem. Explor. Vol. 52, pp. 81–89. Baron D. and Palmer C.D. 1996. Solubility of jarosite at 4-35˚C. Geochim Cosmochim Acta. Vol. 60, pp. 185-195. Beaucaire C., Criaud A. and Michard G. 1987. Control of various trace elements concentration (As, Sb, Ge, U, Ra, Ba) in Cezallier hydrothermal spring waters (Massif Central). Chemical Geology, Vol. 63, pp. 85–99. Belzile N., Lecomte P. and Tessier A. 1989. Testing readsorption of trace elements during partial chemical extractions of bottom sediments. Environ. Sci. Technol. Vol. 23, pp. 1015–1020. Belzile N. and Tessier A. 1990. Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochim. Cosmochim. Acta. Vol. 54, pp. 103–109. Bhumbla D.K. and Keefer R.F. 1994. Arsenic mobilization and bioavailability in soils. In: Nriagu, J.O. (ed.) Arsenic in the Environment, Part I: Cycling and Characterization. John Wiley and Sons Inc., New York, NY, pp. 51–82. Blake G. and Hartge K.H. 1986. Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. In: A. Klute et al. (eds.), Agronomy Monography, Vol. 9, 2nd ed., Madison, WI, pp. 323–336. Borch T., Kretzschmar R., Kappler A., Van Cappellen P., Ginder-Vogel M., Voegelin A. and Campbell K. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. Vol. 44, pp.15–23. Bowell R.J. 1994. Sorption of arsenic by iron oxides and hydroxides in soils. Appl. Geochem. Vol. 9, pp. 279–286. Brindley G.W. 1980. Crystal Structures of Clay Minerals and their X-ray Identification, In: Brindley G.W. and Brown G. (eds.), Mineralogical Society Monograph, Vol. 5, Mineralogical Society, London, pp. 411–438. Brookins D.G. 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin. Casanova J., Bodenan F. and Negrel P. 1999. Microbial control on the precipitation of ferrihydrite and carbonate modern deposits from the Cezallier hydrothermal springs (Massif Central, France). Sedimentary Geology, Vol. 126(1–4), pp.125–145. Chang T.K., Shyu G.S. and Lin Y.P. 1999. Geostatistical analysis of soil arsenic content in Taiwan. Environmental Science Health A: Toxic. Hazard. Subst. Environ. Eng. Col. 34, pp. 1485-1501. Chang T.K., Shyu G.S., Chang W.L., Huang W.D., Huang J.H., Lin J.S. and Lin S.C. 2007. Monitoring and investigation of heavy metal in soil of Taipei City. DEP-95-056.(In Chinese, with an English summary) Chen C.C., Dixon J.B. and Turner F.T. 1980. Iron coatings on rice roots: Morphology and models of development. Soil Sci. Soc. Am. J., Vol. 44, pp. 1113–1119. Chen W.C. 2007. Distribution of Arsenic and Lead in the Sediments in Hot Spring Area of Huang Gang Creek, Beitou. Master Thesis, National Taiwan University, Taipei, Taiwan (In Chinese, with an English summary) Chen Z.S. and Lee D.Y. 1995. Heavy metals contents of representative agricultural soils in Taiwan. J. Chin. Inst. Environ. Eng. Vol. 5, pp. 205-211. Chiang K.Y., Lin K.C., Lin S.C., Chang T.K. and Wang M.K. 2010. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. Journal of Hazardous Materials. Vol. 181, pp. 1066–1071. Chowdhury U.K., Biswas B.K., Chowdhury T.R., Samanta G., Mandal B.K. and Basu G.C. 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Persp. Vol. 108, pp.393-397. Christophe R., Catherine N. and Hubert B. 2000. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. The Science of the Total Environment, Vol. 263, pp. 209-219. CLEA, 2002. The contaminated land exposure assessment model: technical basis and algorithms. Department for Environment, Food and Rural Affairs, Environment Agency, Bristol. Coffman C.B. and Fanning D.S. 1974. Vermiculite determination on whole soils by cationexchange capacity method, Clays Clay Miner. Vol. 22, pp. 271–283. Criaud A. and Fouillac C. 1989. The distribution of arsenic (III) and arsenic (V) in geothermal waters: examples from the Massif Central of France, the Island of Dominica in the Leeward Islands of the Caribbean, the Valles Caldera of New Mexico, USA, and southwest Bulgaria. Chemical Geology, Vol. 76, pp. 259–269. Cullen W.R. and Reimer K.J. 1989. Arsenic speciation in the environment. Chem. Rev. Vol. 89, pp. 713–764. Dangić A. 1996. Geochemistry and the environment: a general complex approach to environmental studies. In: 30th International Geological Congress, Beijing. (Abstracts) Vol. 3, pp. 56. Dangić A. 2001. A general geochemical–geological approach to problems of mining impacts to the environment. In: 3rd International Symposium Mining and Environmental Protection, Belgrade-Vrdnik, Proceedings, FMG: Belgrade, pp. 14–20. Dangić A. 2007. Arsenic in surface- and groundwater in central parts of the Balkan Peninsula (SE Europe), Trace Metals and other Contaminants in the Environment, Vol. 9, pp. 127–156. Dangić A. and Dangić J. 1983. Mineral–water interactions in the Srebrenica area, Yugoslavia, involving oxidation of sulfide ores and deposition of iron hydroxides and sulphates. In: International Colloquium CNRS Petrology of Weathering and Soils. CNRS: Paris, Abstracts, pp. 107. Dangić A. and Dangić J. 1989. Geochemical processes and genesis of mineral water Crni Guber, Srebrenica, Yugoslavia. Ann. Geol. Penins. Balk., Vol. 53, pp. 445–458. Das H.K., Sengupta P.K., Hossain A., Islam M. and Islam F. 2002. Diversity of environmental arsenic pollution in Bangladesh. In: Ahmed MF, Tanveer SA, Badruzzaman ABM, editors. Bangladesh environment, Vol. 1. Dhaka, Bangladesh: Bangladesh Paribeh Andolon. pp. 234-44. Das H.K., Mitra A.K., Sengupta P.K., Hossain A., Islam F. and Rabbani G.H. 2004. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ. Int. Vol. 30, pp. 383-387. Dittmar J., Voegelin A., Roberts L.C., Hug S.J., Saha G.C., Ali, M.A., Badruzzaman A.B.M. and Kretzschmar R. 2007. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ. Sci. Technol. Vol. 41, pp. 5967-5972. Dove P.M. and Rimstidt J.D. 1985. The solubility and stability of scorodite, FeAsO4 •2H2O. Am. Mineral, Vol. 70, pp. 838-844. Elkhatib E.A., Bennett O.L. and Wright R.J. 1984a. Kinetics of arsenite sorption in soils. Soil Sci. Soc. Am. J. Vol. 48, pp. 758–762. Elkhatib E.A., Bennett O.L. and Wright R.J. 1984b. Arsenite sorption and desorption in soils. Soil Sci. Soc. Am. J. Vol. 48, pp. 1025–1030. Environment Protection Agency of Taiwan (Taiwan-EPA), 2008. Investigation and monitoring of deposition of acid rains, EPA-97-FA11-03-A045. Taipei, Taiwan, 2008(in Chinese with English abstract). Evangelou V.P. 1995. Pyrite Oxidation and Its Control. CRC Press, New York. Fendorf S.E., Eick M.J. and Grossl P. et al. 1997. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science and Technology Vol. 31, pp. 315–320. Ferguson J.F. and Gavis J. 1972. A review of the arsenic cycle in natural waters. Water Res. Vol. 6, pp. 1259–1274. Frommer J., Voegelin A., Dittmar J., Marcus M.A. and Kretzschmar R. 2011. Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: results from micro-focused X-ray spectroscopy. Eur. J. Soil Sci. Vol. 62, pp. 305–317. Gee G.W. and Bauder J.W. 1986. Methods of Soil Analysis Part 1: Physical and Mineralogical Methods, In: Klute A. et al. (Eds.), Agronomy Monography 2nd ed., Vol. 9, Madison, WI, pp. 383–412. Giuseppetti G. and Tadini C. 1989. Beudantite: PbFe(SO4)(AsO4)(OH)6, its crystal structure, tetrahedral site disordering and scattered Pb distribution. Neue Jahnbuck fur Mineralogie Monatshefte, pp. 27-33. Gόmez-Ariza J.L., Sanchez R.D. and Giraldez I. 1998. Selective extraction of iron oxide associated arsenic species from sediments for speciation with coupled HPLC-HG- AAS. Journal of Anal. Atom. Spectrom. Vol. 13, pp. 1375–1379. Gruebel K.A., Davis J.A. and Leckie J.O. 1988. The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sediments. Soil Sci. Soc. Am. J. Vol. 52, pp. 390-397. Guern C., Le P., Conil P. and Baranger. 2007. Dynamics of arsenic at hydrothermal spring outlets: role of Fe oxyhydroxides and carbonates. Trace Metals and other Contaminants in the Environment, Vol. 9, pp. 501–523. Gustafsson J.P. and Bhattacharya P. 2007. Geochemical modelling of arsenic adsorption to oxide surfaces. Trace Metals and other Contaminants in the Environment, Vol. 9, pp. 159–206. Hansel C.M., Fendorf S., Sutton S. and Newville M. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. Vol. 35, pp. 3863–3868. Ho C.S. 1988. An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan. Central Geological Survey, The Ministry of Economic Affairs, Taiwan, pp. 192. Hsu K.H., Hsieh L.L., Chiou H.Y., Lee C.J., Wang C.Y., Lee T.H. and Chen C.J. 1999. Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in Taiwan: A study on prevalence of hypertension. Chin J. Public. Health, Vol. 18 (suppl. 1), pp. 124-133. Jacobs L.W., Myers J.K. and Keeny D.R. 1970. Arsenic sorption by soils. Soil Sci. Am. Proc. Vol. 34, pp. 750–754. Jackson M.L. 1979. Soil Chemical Analysis. Advanced Course. 2nd ed., University of Wisconsin, Madison, WI. Jain C.K. and Ali I. 2000. Arsenic: occurrence, toxicity and speciation techniques. Water Res. Vol. 34, pp. 4304–4312. Jones C.A., Inskeep W.P. and Bauder J.W. et al. 1999. Arsenic solubility and attenuation in soils of Madison River basin, Montana: impacts on long-term irrigation. J. Environ. Qual. Vol. 28, pp. 1314–1320. Juan C.N.M., Jose M.G.Q., Daniel B.W., Cristalina A.O., Eduardo G.R. and Antonio M.C. 2007. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Science of the Total Environment, Vol. 378, pp. 18–22. Kabata-Pendias A. and Pendias H. 2001. Trace elements in soils and plants. 3rd ed. CRC Press, Boca Raton, FL, USA, pp. 413. Kashkay C.M., Borovskaya Y.B. and Babazade M.A. 1975. Determination of 〖∆G〗_(f,298)^° of synthetic jarosite and its sulfate analogues. Geochem. Int. Vol. 5, pp. 115-121. Kent D.B. and Fox P.M. 2004. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochem. Trans. Vol. 5(1), pp.1–12. Khan M.A., Stroud J.L., Zhu Y.G., McGrath S.P. and Zhao F.J. 2010. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ. Sci. Technol. Vol. 44, pp. 8515–8521. Kilbride C., Poole J. and Hutchings T.R. 2006. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable. Environ. Pollut. Vol. 143, pp. 16-23. King H.B., Wang M.K., Zhuang S.Y., Hwong J.L., Liu C.P. and Kang M.J. 2006. Sorption of sulfate and retention of cations in forest soils of Lien–Hua–Chi watershed in central Taiwan, Geoderma, Vol. 131, pp. 143–153. Kirk G. 2004. The biogeochemistry of submerged soils. Wiley, Chichester. Kloke A., Sauerbeck D.R. and Vetter H. 1984. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu, J., (ed.). Changing metal cycles and human health. Berlin, Springer, pp. 113-141. Kumaraswamy S., Ramakrishnan B., Satpathy S.N., Rath A.K., Misra S., Rao V.R. and Sethunathan N. 1997. Spatial distribution of methane-oxidizing activity in a flooded rice soil. Plant Soil, Vol. 191, pp.241-248. Larsen E.H., Moseholm L. and Nielsen M.M. 1992. Atmospheric deposition deposition of trace elements around point sources and human health risk assessment: II. Uptake of arsenic and chromium by vegetables grown near a wood preservation factory. Sci. Total Environ. Vol. 126, pp. 263-275. Lee C.H., Hsieh Y.C., Lin T.H. and Lee D.Y. 2013. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant and Soil, Vol. 363, pp. 231-241. Lee Y.T. 1961. Radioisotope study of Hokutolite. Master Thesis, National Tsing Hua University, Hsingchu, Taiwan, pp. 23 (in Chinese with English abstract). Li G.C., Lin H.T. and Lai C.S. 1994. Uptake of heavy metals by plants in Taiwan. Biogeochem. Trace Elem. Vol. 16, pp. 153-160. Lin H.T., Wong S.S. and Li G.C. 2004. Heavy metal content of rice and shellfish in Taiwan. J. Food Drug Anal. Vol. 12, pp. 176-174. Literathy P., Nasser A.L., Zarba M.A. and Ali M.A. 1987. The role and problems of monitoring bottom sediment for pollution assessment in the coastal marine environment. Wat. Sci. Technol. Vol. 19, pp. 781-792. Liu W.J., Zhu Y.G., Hu Y., Williams P.N., Gault A.G., Meharg A.A., Charnock J.M. and Smith F.A. 2006a. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants ( Oryza sativa L.). Environ. Sci. Technol. Vol. 40, pp.5730–5736. Liu C.L., Chang T.W., Wang, M.K. and Huang C.H. 2006b. Transport of cadmium, nickel and zinc in Taoyuan red soil using one-dimensional convective-dispersive model. Geoderma, Vol. 131, pp. 181–189. Liu W.J., Zhu Y.G. and Smith S.E. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture. J. Exp. Bot. Vol. 55 (403), pp. 1707-1713. Livesey N.T. and Huang P.M. 1981. Adsorption of arsenate on soils and its relation to selected chemical properties and anions. Soil Sci. Vol. 13, pp. 88–94. Lombi E., Sletten R.S. and Wenzel W.W. 2000. Sequentially extracted arsenic from different size fractions of contaminated soils. Water Air Soil Pollut. Vol. 124, pp. 319–32. Mandal B.K. and Suzuki K.T. 2002. Arsenic round the world: a review. Talanta Vol. 58, pp. 201–235. Marin A.R., Masscheleyn P.H. and Patrick, W.H. 1992. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil, Vol. 139, pp. 175-183. Marin A.R., Masscheleyn P.H. and Patrick W.H. 1993. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil, Vol. 152, pp.245-253. Masscheleyn P.H., Delaune R.D. and Patrick W.H. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. Vol. 25, pp. 1414–1419. McBride M.B. 1994. Environmental Chemistry of Soils. Oxford University Press Inc., New York, NY, pp. 406. Meharg A.A. and Hartlet-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. Vol. 154, pp. 29-43. Meharg A.A. and Rahman M.D.M. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ. Sci. Technol. Vol. 37, pp. 229-234. Meharg A.A. and Zhao F.J. 2012. Arsenic & Rice. Springer Dordrecht Heidelberg London New York. DOI 10.1007/978-94-007-2947-6. Mitra A.K., Bose B.K., Kabir H., Das B.K. and Hussain, M. 2002. Arsenic-related health problems among hospital patients in southern Bangladesh. J. Health Popul. Nutr. Vol. 20, pp. 198–204. Mohan D. and Pittman JrC.U. 2007. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. Vol.142, pp. 1-53. Moore J.N., Ficklin W.H. and Johns C. 1988. Partitioning of arsenic and metals in reducing sulfidic sediments. Environ. Sci. Technol. Vol. 22, pp. 432–437. Motooka J.M. 1996. Organometallic halide extraction for 10 elements by inductively coupled plasma-atomic emission spectrophotometry, in Arbogast, B.F., ed., Analytical methods manual for the Mineral Resources Surveys Program, U.S. Geological Survey: U.S. Geological Survey Open-File Report 96-525, pp. 102-108. Mukherjee A.B. and Bhattacharya P. 2001. Arsenic in groundwater in the Bengal Delta Plain: slow poisoning in Bangladesh. Environmental Review, Vol. 9(3), pp. 189–220. Neumann R.B., St Vincent A.P., Roberts L.C., Badruzzaman A.B.M., Ali M.A. and Harvey C.F. 2011. Rice field geochemistry and hydrology: an explanation for why groundwater irrigated fields in Bangladesh are net sinks of arsenic from groundwater. Environ. Sci. Technol. Vol. 45, pp. 2072–2078. Nordstrom D. K. 2000. Arsenic, antimony, selenium, tellurium and bismuth. In: Young, C. (ed.) Minor elements. Society for Mining, Metallurgy and Exploration, pp. 21–30. Nriagu J.O. 1989. A global assessment of natural sources of atmospheric trace metals. Nature (London), Vol. 338, pp. 47–49. Onishi H. 1969. Arsenic. (Chapter 33). In: Wedepohl K.H. (ed.) Handbook of Geochemistry. Springer-Verlag, NY. O’Reilly S.E., Strawn D.G. and Sparks D.L. 2001. Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci. Soc. Am. J. Vol. 65, pp. 67–77. Pacyna J.M. 1986. Atmospheric trace elements from natural and anthropogenic sources. Adv. Environ. Sci. Technol. Vol. 17, pp. 33–52. Pacyna J.M. 1998. Source inventories for atmospheric trace metals. In: Harrison, R. M., van Grieken, R. (eds.) Atmospheric Particles. John Wiley & Sons, Inc., New York, NY, pp. 385–423. Pai C.W., Wang M.K., Wang W.M. and Houng K.H. 1999. Smectites in iron-rich calcareous soil, and black soils of Taiwan, Clays Clay Miner. Vol. 47, pp. 389–398. Panaullah G.M., Alam T., Hossain M.B., Loeppert R.H., Lauren J.G., Meisner C.A., Ahmed Z.U. and Duxbury J.M. 2009. Arsenic toxicity to rice ( Oryza sativa L.) in Bangladesh. Plant Soil, Vol. 317, pp. 31–39. Pandey P.K., Yadav S., Nair S. and Bhui A. 2002. Arsenic contamination of the environment: a new perspective from central-east India. Environ. Int. Vol. 28, pp. 235–245. Piorek S. 1997. Field-protable X-ray fluorescence spectrometry: past, present and future. Field Anal. Chem. Tech. Vol. 1(6), pp. 317-329. Pokroviski G., Gout R. and Schott J. et al. 1996. Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta, Vol. 60(5), pp. 737–749. Pradosh R. and Anupama S. 2002. Metabolism and toxicity of arsenic: A human carcinogen. Current Science, Vol. 82(1), pp. 38-45. Rahman M.A., Rahman M.M., Majid M.A. and Khaled H.M. 2004. Influence of soil arsenic concentrations on rice (Oryza sativa L.). Subtrop. Agric. Res. Dev. Vol. 2(3), pp. 24-31. Rahman M.A., Hasegawa H., Rahman M.M., Miah M.A.M. and Tasmin A., 2007a. Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotox. Environ. Safe, doi:10.1016/j.ecoenv.2007.01. 005. Rahman M.A., Hasegawa H., Rahman M.M., Rahman M.A. and Miah M.A.M. 2007b. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, Vol. 69, pp. 942-948. Rahman M.A., Hasegawa H., Rahman M.M., Islam M.N., Miah M.A.M. and Tasmin, A. 2007c. Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh: A glass house study. Water Air Soil Poll. Vol. 185, pp. 53-61. Randall P. and Chattopadhyay S. 2004. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. J. Hazard Mater. Vol. B114, pp. 211–223. Rhoades J.K. In: A.L Page et al. (eds.) 1982. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, ,Agronomy Monography, 2nd ed., Vol. 9, Madison, WI, pp. 149–158. Robinson B., Outred H., Brooks R. and Kirkman J., 1995. The distribution and fate of arsenic in the Waikato River System, North Island, New Zealand. Chem. Spec. Bioavail. Vol. 7, pp. 89–96. Sadiq M. 1997. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut. Vol. 93, pp. 117–136. Sadiq M., Zaidi T.H. and Mian A.A. 1983. Environmental behavior of arsenic in soils: theoretical. Water, Air, Soil Pollut. Vol. 20, pp. 369–377. Sakata M. 1987. Relationship between adsorption of arsenic (III) and boron by soil and soil properties. Environ. Sci. Technol. Vol. 21, pp. 1126–1130. Schoof R.A., Yost L.J., Crecelius E., Irgolic K., Goessler W., Guo H.R. and Greene H.L. 1998. Dietary arsenic intake in Taiwanese districts with elevated arsenic in drinking water. Hum. Ecol. Risk Assess. Vol. 4, pp. 117-135. Schoof R.A., Yost L.J., Eickhoff J., Crecelius E.A. and Cragin D.W. et al. 1999. A market basket survey of inorganic arsenic in food. Food Chem. Toxicol. Vol. 37, pp.839–846. Seyfferth A.L., Webb S.M., Andrews J.C., Fendorf S. 2010. Arsenic localization, speciation, and co-occurrence with iron on rice ( Oryza sativa L.) roots having variable Fe coatings. Environ. Sci. Technol. Vol. 44, pp. 8108–8113. Shaibur M.R., Kitajima N., Sugawara R., Kondo T., Huq S.M.I. and Kawai S. 2006. Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically. Soil Sci. Plant Nutr. Vol. 52, pp. 691-700. Sherman D.M. and Randall S.R. 2003. Surface complexation of arsenic(V) to iron(III) hydroxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimicaet Cosmochimica Acta, Vol. 67, pp. 4223–4230. Smedley P.L. and Kinniburgh D.G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, Vol. 17, pp. 517–568. Smith A.H., Lingas E.O. and Rahman M. 2001. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. B. World Health Organ. Vol. 78, pp. 1093–1103. Smith E., Naidu R. and Alston A.M. 1998. Arsenic in the soil environment: a review. Adv. Agron. Vol. 64, pp. 149–195. Smith R.A., Alexander R.B. and Wolman M.G. 1987. Water-quality trends in the Nations rivers. Science, Vol. 235, pp. 1607–1615. Soil Survey Staff, Keys to Soil Taxonomy, 10th ed., 2006. Washington, DC, United States Department of Agriculture and Natural Resources Conservation Service. Soil Survey Staff, Soil Survey Manual. 1962. United States Department of Agriculture, Washington, DC, pp. 503. Stollenwerk K.G. 2003. Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Arsenic in Ground Water: Geochemistry and Occurrence (eds I. Welch, A. Stollenwerk, G. Kenneth) pp. 67–100. Kluwer Academic Publishers, ISBN 1-40207-317-8. Stroud J.L., Norton G.J., Islam M.R., Dasgupta T., White R., Price A.H., Meharg A.A., McGrath S.P. and Zhao F.J. 2011. The dynamics of arsenic in four paddy fields in the Bengal delta. Environ. Pollut. Vol. 159, pp. 947–953. Su S.W., Lin S.C., Huang W.D., Chang T.K., Chen Z.S. 2008. The food safety of rice cultivated in arsenic contaminated soils in Guandu Plain of northern Taiwan. In Programme and Abstracts for the Joint Conference of the Australia and New Zealand Societies of Soil Science in Conjunction with the International Year of Planet Earth, Ed. Neall V, pp. 98. New Zealand Society of Soil Science (NZSSS), Palmerston North. Su Y.H., McGrath S.P., Zhu Y.G. and Zhao F.J. 2008. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytologist, Vol. 180, pp. 434–441. Syu C.H., Jiang P.Y., Huang H.H., Chen W.T., Lin T.H., and Lee D.Y. 2013. Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Science and Plant Nutrition, Vol. 59, pp. 463-471. Syu C.H., Lee C.H., Jiang P.Y., Chen M.K., and Lee D.Y. 2014. Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant and Soil, Vol. 374, pp. 411-422. Szymanski J.T. 1988. The crystal structure of Beudantite, Pb(Fe,Al)3[(As,S)O4] 2(OH) 6. Can. Mineral, Vol. 26, pp. 923-932. Tabelin C.B., Igarashi T., Tamoto S. and Takahashi R. 2012. The roles of pyrite and calcite in the mobilization of arsenic and lead from hydrothermally altered rocks excavated in Hokkaido, Japan., Journal of Geochemical Exploration, Vol. 119, pp. 17–31. Taggart M.A., Carlisle M., Pain D.J., Williams R., Osborn D., Joyson A. and Meharg A.A. 2004. The distribution of arsenic in soil affected by the Aznalcollarmine spill, SWSpain. Sci. Total Environ. Vol. 323, pp. 137–152. Takahashi Y., Minamikawa R., Hattori K.H., Kurishima K., Kihou N. and Yuita K. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. Vol. 38, pp.1038–1044. Tanaka T. 1990. Arsenic in the natural environment Part II_Arsenic concentrations in thermal waters from Japan. Applied Organometallic Chemistry, Vol. 4, pp. 197-203. Tessier A., Campbell P.G.C. and Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. Vol. 51 (7), pp. 844–851. Tseng C.H., Tai T.Y., Chong C.K., Tseng C.P., Lai M.S., Lin B.J., Chiou H.Y., Hsueh Y.M., Hsu K.H. and Chen C.J. 2000. Long-term arsenic exposure and incidence of non-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health Persp. Vol. 108, pp. 847-851. Tsutsumi S., Amagai, T., Kawaguchi M., Ishizuka S. and Matsumoto Y., 1980. Effect of arsenic trioxide(As2O3) on the uptake of 3H-thymidine in lymphocytes of mice. Bull. Tokyo Dent. Coll. Vol. 21 (2), pp. 63-70. Ullah S.M. 1998. Arsenic contamination of groundwater and irrigated soils of Bangladesh. International Conference on Arsenic Pollution of Groundwater in Bangladesh: Causes, Effects and Remedies, Dhaka Community Hospital, Dhaka, Bangladesh, pp. 133. US EPA, 1998. Environmental Technology Verification Report. Field Protable X-ray Fluorescence Analyzer. Metorex X-MET 920-P and 940, EPA/600/R-97/146. US EPA, 2007. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils and Oils. Method 3051 A, US Environmental Protection Agency, Washington, DC. Wagman D.D., Evans W.H. and Parker V.B. et al. 1982. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units of chemical thermodynamic properties. J. Phys. Chem. Ref. Data, Vol. 11(suppl. 2), pp. 392. Wang I.T. 2005. The characteristics and the concentration of toxic heavy metals and anions of hot springs in Taiwan. Master Thesis, National Yang Ming University, Taipei, Taiwan (in Chinese with English abstract). Wang M.K., Houng K.H., Lin Y.W., Lim K.K. and Chin J. 1988. Effect of pH, potassium, sulfate and iron concentrations on the formation of jarosite and goethite, Agri. Chem. Soc. Vol. 26(1), pp. 117–129. Warren G.P., Alloway B.J., Lepp N.W., Singh B., Bochereau F.J.M. and Penny C. 2003. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ. Vol. 311, pp. 19-33. Waychunas G.A., Rea B.A. and Fuller C.C. et al. 1993. Surface chemistry of ferrihydrite. 1. EXAFS study of the geometry of coprecipitated and adsorbed arsenate. Geochimicaet Cosmochimica Acta, Vol. 57, pp. 2251–2269. Waychunas G.A., Davis J.A. and Fuller C.C. 1995. Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH–reevaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochimicaet Cosmochimica Acta, Vol. 59, pp. 3655–3661. Waychunas G.A., Fuller C.C. and Rea B.A., et al. 1996. Wide angle X-ray scattering (WAXS) study of ‘‘two-line’’ ferrihydrite structure: effect of arsenate sorption and comparison with EXAFS results. Geochimicaet Cosmochimica Acta, Vol. 60, pp. 1765–1781. Welch A.H., Lico M.S. and Hughes J.L. 1988. Arsenic in ground water of the Western United States. Ground Water, Vol. 26(3), pp. 333–347. Welch A.H., Westjohn D.B., Helsel D.R. and Wanty R.B. 2000. Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water, Vol. 38, pp. 589–604. Wenzel W.W., Kirchbaumer N., Prohaska T., Stingeder G., Lombi E. and Adriano D.C. 2001. Arsenic fractionation in soil using an improved sequential extraction procedure, Anal. Chim. Acta, Vol. 436, pp. 309–323. White D.E., Hem J.D. and Waring G.A. 1963. Data of Geochemistry. 6th ed. M. Fleischer, (ed). Chapter F. Chemical Composition of Sub-Surface Waters. US Geol. Surv. Prof. Pap. 440-F. Williams P.N., Price A.H., Raab A., Hossain S.A., Feldmann J. and Meharg A.A. 2005. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol. Vol. 39, pp. 5531–5540. Wu M.M., Kuo T.L. and Hwang Y.H. 1989. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am. J. Epidemiol. Vol. 130, pp. 1123–1132. Xie Z.M. and Huang C.Y. 1998. Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Commun. Soil Sci. Plan. Vol. 29, pp. 2471-2477. Xu X.Y., McGrath S.P., Meharg A. and Zhao F.J. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. Vol. 42, pp. 5574–5579. Yan C.H. 1994. Arsenic distribution in soils. In: Nriagu J.O. (ed.) Arsenic in the Environment, John Wiley & Sons, Inc., New York, NY, pp. 17–49. Yan X.P., Kerrich R. and Hendry M.J. 2000. Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan. Canada. Geochim. Cosmochim. Acta Vol. 64, pp. 2637–2648. Yokoyama T., Takahashi Y., Tarutani T., 1993. Simultaneous determination of arsenic and arsenious acids in geothermal water. Chem. Geol. Vol. 103, pp. 103–111. Yolcubal I. and Akyol N.H. 2008. Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption, Chemosphere, Vol. 73, pp. 1300–1307. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57567 | - |
| dc.description.abstract | 西元2006年,研究調查發現北投關渡平原水田土壤有超過100公頃的農地,因引用含砷溫泉水灌溉長達百餘年而導致土壤遭受嚴重砷汙染。本研究目的希冀透過調查從溫泉水源頭(地熱谷)到水田中(關渡平原)砷在環境中流佈的現況,其中包含分析土壤溶液砷的物種來評估水稻在遭受砷汙染土壤的危害情形,同時並利用逐級萃取方法比較關渡平原土壤與磺港溪底泥砷的形態分布,藉以瞭解砷在該研究區域存在性態及對於環境所造成的危害潛勢。根據地熱谷中陰、陽離子組成的資料顯示,酸性溫泉水中的砷與鉛等重金屬會在河道中形成硫酸鹽的結晶顆粒。進一步研究發現在關渡平原土壤中的X光繞射分析結果顯示在黏土顆粒中有砷鉛鐵礬結晶存在。水稻植體與所對應根部土壤之砷濃度係利用原子吸收光譜儀(AAS)外掛自動化連續流動式氫化物產生裝置(HFS-3)分析;水稻根部土壤溶液砷種類檢測則是使用感應耦合電漿質譜儀(ICP-MS)外掛高效率液相層析儀(HPLC)。水稻植體砷含量多寡受灌溉水、土壤砷濃度與形式影響,然而水稻根部吸收土壤中砷的機轉尚無一致定論。研究結果得知水稻植體根部、莖葉與稻穀的含砷量平均值分別為98.7、3.49 與0.074 mg kg-1,顯示砷含量會隨著稻根-莖葉-稻穀而呈現遞減的現象;土壤總砷濃度平均值為135 mg kg-1 (67 mg kg-1至438 mg kg-1);土壤溶液抽出液砷濃度(AsIII 與AsV)的平均值為30.1 μg L-1 (1.5 μg L-1至100.5 μg L-1)。水田在浸水條件下,砷在土壤溶液係以亞砷酸鹽(AsIII)的形式存在為主,平均約佔89%。土壤砷濃度與水稻根部砷含量成正比的線性相關;而莖葉和稻穀砷含量與土壤砷濃度則無顯著地的線性相關;土壤溶液的總砷濃度(AsIII 與AsV)值與水稻植體砷含量的關係也與上述現象一致。依據本研究逐級萃取結果分析得知水田土壤中的砷係以殘餘態(32-53 %)與無定形及弱結晶鐵鋁氧化物型態(33-53 %)所佔比率較高;底泥的砷型態分布大部分集中在無定形及弱結晶鐵鋁氧化物型態(32-38 %)、強結晶鐵鋁氧化物型態(12-37 %)與特定吸附型態(18-29 %)等三種。比較上述兩者的砷型態分布明顯得知,不管是考量砷濃度值或是逐級萃取中非特定吸附型態所佔百分比值,研究數據都顯示底泥中砷的移動性遠比水田土壤還高出許多。鑑於磺港溪上游的地熱谷至今都還持續地湧出大量含砷的溫泉水釋放於環境中,建議相關單位應持續且積極投入更多資源研究關渡平原地區砷的流佈以及對環境的影響,確保當地人民居住的安全與健康。 | zh_TW |
| dc.description.abstract | A study conducted in 2006 showed that over 100 hectares of rice paddies in Beitou, Taiwan, irrigated over the hundred years using water mixed with hot spring, was heavily polluted by arsenic. The objective of the present study was carried out to examine the intensively circulation of arsenic in the aqua system from geothermal (Thermal Valley) to paddy fields (Guandu Plain) and estimate the influence of arsenic-tained paddy soils on rice via analyzing arsenic-adsorbed forms in soil and arsenic species in soil solution. Meanwhile, the comparative analysis of arsenic fractionations by using sequential extraction procedure (SEP) between paddy soils in Guandu Plain and sediments in Huang Guang Creek (HGC) was executed in order to understand the existing arsenic behaviors and the potential hazards of arsenic in the surroundings. According to the analyzed datum of ion and anion in the Thermal Valley, supersaturated solution of lead (Pb2+) and arsenopyrite (H2AsO4-) leads to the process of beudantite precipitation via sulfide oxdation model. Furthermore, the XRD analysis of Guandu paddy soils indicated the beudantite particles are present in clay fractions. Soil samples and rice tissues were collected and analyzed separately, using Atomic Absorption Spectrophotometer (AAS) with automatic hydride generator (HFS-3); meanwhile, the SEPs of As-tainded paddy soils and sediments were also carried out and the arsenic speciation of soil solution in the rhizosphere was determined by the Inductively-Coupled Plasma Mass Spectrometer (ICP-MS) with high-pressure liquid chromatography system (HPLC). Arsenic contents of rice tissues depend on irrigation methods, quantity and speciation of arsenic in soils etc., however, the transformation mechanisms of arsenic from soils to rice don’t have the final conclusion until now. The studied results were showed that the mean arsenic contents in grains, straws and root were separately measured at 0.13 mg kg-1, 3.49 mg kg-1 and 98.7 mg kg-1, also indicated that rice tissues of arsenic has the decreasing trend following root-straw-grain. At the same time, the mean total arsenic concentration were estimated at 135 mg kg-1 (from 67 mg kg-1 to 438 mg kg-1) in paddy soils and 30.1 μg L-1 (from 1.5 μg L-1 to100.5 μg L-1) in paddy soil solution, respectively. The results of paddy soil solution indicated that the arsenite (AsIII) predominates (about 89%) under anaerobic conditions. Regression of soil arsenic levels with rice grains and straws were less significant compared to that with rice roots and so did soil solution arsenic content, including AsIII and AsV. Arsenic level in root strongly depended on arsenic concentration of soil suggesting that the high arsenic concentration may have the potential for translocation from root to grain which ultimately effects on the human health. The sequential extraction experiments resulted in the high portions of As remaining in the amorphous and poorly-crystalline hydrous oxides of Fe and Al (33-53 %), and residual (32-53 %) for paddy soils; mostly in the the amorphous and poorly-crystalline hydrous oxides of Fe and Al (32-38 %), well-crystalline hydrous oxides of Fe and Al (12-37 %), and specifically sorbed (18-29 %) for sediments. Comparing the distributions of arsenic fractionation between paddy soils and sediments, it was apparent that the percentages of amorphous or poorly crystalline Al and Fe hydrous oxides extracted and residual from paddy soils were greater than those removed from sediments, but the mobile of arsenic from the sediments in HGC was greater than from paddy soils in Guandu Plain, no matter what investigating total arsenic content or analyzing arsenic fractionation using SEP. The study suggests that more resources should be founded for the circulation of arsenic in Guandu Plain and its impact in the surroundings to make sure the safety and health of the local residents due to the going process of geochemical procedures that a large amount of arsenic is Continuously separated to surroundings from Thermal Valley in Beitou until now. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:51:51Z (GMT). No. of bitstreams: 1 ntu-103-D95622007-1.pdf: 28128718 bytes, checksum: 8d40c7bae3798cb53f52b74b43967d24 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
論文口試委員審定書…………………………………………………….i 謝誌…………………………………………………………………………..ii 摘要………………….………………………………………………………iii Abstract………………….…………………………………………………v Chapter 1 Introduction…………………………………………………...1 1.1 Introduction…………………………………………………………1 1.2 The circulation of arsenic in the ecosystem……………………2 Chapter 2 Literature Reviews…………………………………………..5 2.1 Reviews……………………………………………………………..5 2.2 Fate of arsenic in geothermal and surface-waters……………….6 2.3 Sediments of arsenic in the aqua system………………………11 2.4 Environmental information nearby Guandu Plain………………………16 2.5 Characteristic and speciation of arsenic in paddy soils……….18 2.6 Relationship of arsenic between soil and rice………………….23 2.7 The Sequential Extraction Procedure of Arsenic for soils and sediments…30 Chapter 3 Materials and Methods……………………………………34 3.1 Flow chart of study……………………………………………….34 3.2 Materials…………………………………………......................36 3.2.1 Study site……………………………………………………….36 3.2.2 Samples collection and treatment…………………………….40 3.3 Methods………………………………………….......................47 3.3.1 Analytical instruments………………………………………..47 3.3.2 Arsenic-lead-bearing phases………………………………….50 3.3.3 SEP of arsenic in the soils and sediments……………………54 3.3.4 Physico-chemical properties of soils………………………..57 3.3.5 Analyzed arsenic in QA/QC…………………………………..58 3.3.6 Statistical analysis…………………………………………….59 Chapter 4 Results and Conclusions………………………………….60 4.1 Results and Discussion………………………………………......60 4.1.1 Physical-chemical properties in soils and sediments………60 4.1.2 Arsenic levels in soils…………………………………………62 4.1.3 Arsenic speciation in paddy soil solution……………………64 4.1.4 Arsenic levels in tissues of rice ……….……………………..67 4.1.5 The relationship of Arsenic levels between rice and soil……………..72 4.1.6 X-ray diffraction, SEM images and EDS analyses……….…………..77 4.1.7 Arsenic fractionation in paddy soils and sediments using SEP…...……81 4.2 Conclusions………………………………………………………..86 References…………………………………………………………………89 | |
| dc.language.iso | en | |
| dc.subject | 砷物種 | zh_TW |
| dc.subject | 砷鉛鐵礬 | zh_TW |
| dc.subject | 水稻田 | zh_TW |
| dc.subject | 地熱溫泉 | zh_TW |
| dc.subject | 逐級萃取 | zh_TW |
| dc.subject | Arsenic speciation | en |
| dc.subject | Beudantite | en |
| dc.subject | rice field | en |
| dc.subject | geothermal spring | en |
| dc.subject | sequential extraction procedure | en |
| dc.title | 溫泉地區砷汙染之地質化學程序及對水田與水稻之影響-台灣關渡平原為例 | zh_TW |
| dc.title | Geochemical Process of Arsenic-tained Site by Geothermal and Its Impact on Paddy Soils and Rice – A Case Study of Guandu Plain, Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張文亮(Wen-Liang Chang),蘇明道(Ming-Daw Su),李達源(Dar-Yuan Lee),盧虎生(Huu-Sheng Lur) | |
| dc.subject.keyword | 砷物種,砷鉛鐵礬,水稻田,地熱溫泉,逐級萃取, | zh_TW |
| dc.subject.keyword | Arsenic speciation,Beudantite,rice field,geothermal spring,sequential extraction procedure, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 27.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
