請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57555
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李建模(Chien-Mo Li) | |
dc.contributor.author | Ang-Feng Lin | en |
dc.contributor.author | 林昂鋒 | zh_TW |
dc.date.accessioned | 2021-06-16T06:51:17Z | - |
dc.date.available | 2014-08-01 | |
dc.date.copyright | 2014-08-01 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-22 | |
dc.identifier.citation | [Ahmed 06] N. Ahmed, M. Tehranipoor, and V. Jayaram. “Timing-based delay test
for screening small delay defects”. Proceedings ACM/IEEE Design Automation Conference, 2006:320–325. [Bhoj 12] A. Bhoj, M. Simsir, and N. Jha. “Fault models for logic circuits in the multigate era”. IEEE Transactions on Nanotechnology, 11(1), 2012:182–193. [Chang 13] C.-Y. Chang, K.-Y. Liao, S.-C. Hsu, J. Li, and J.-C. Rau. “Compact test pattern selection for small delay defect”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6), 2013:971–975. [Chatterjee 09] D. Chatterjee, A. DeOrio, and V. Bertacco. “Event-driven gate-level simulation with gp-gpus”. Proceedings ACM/IEEE Design Automation Conference, 2009:557–562. [Cheng 93] K.-T. Cheng. “Transition fault testing for sequential circuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(12), 1993:1971–1983. [Cho 05] K. Y. Cho, S. Mitra, and E. J. McCluskey. “Gate exhaustive testing”. Proceedings IEEE International Test Conference, 2005:7 pp.–777. [Devadas 93] S. Devadas, K. Keutzer, and S. Malik. “Computation of floating mode delay in combinational circuits: theory and algorithms”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12, 1993:1913–1923. [Geuzebroek 07] J. Geuzebroek, E. Marinissen, A. Majhi, A. Glowatz, and F. Hapke. “Embedded multi-detect atpg and its effect on the detection of unmodeled defects”. Proceedings IEEE International Test Conference, 2007:1–10. [Goel 09] S. Goel, N. Devta-Prasanna, and R. Turakhia. “Effective and efficient test pattern generation for small delay defect”. Proceedings IEEE VLSI Test Symposium, 2009:111–116. [Gulati 08] K. Gulati and S. Khatri. “Towards acceleration of fault simulation using graphics processing units”. Processings ACM/IEEE Design Automation Conference, 2008:822–827. [Gupta 04] P. Gupta and M. Hsiao. “Alaptf: a new transition fault model and the atpg algorithm”. Proceedings IEEE International Test Conference, 2004:1053–1060. [Hapke 09] F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, H. Hashempour, S. Eichenberger, C. Hora, and D. Adolfsson. “Defect-oriented cellaware atpg and fault simulation for industrial cell libraries and designs”. Proceedings International Test Conference, 2009:1–10. [Hapke 11] F. Hapke, J. Schloeffel, W. Redemund, A. Glowatz, J. Rajski, M. Reese, J. Rearick, and J. Rivers. “Cell-aware analysis for small-delay effects and production test results from different fault models”. Proceedings IEEE International Test Conference, 2011:1–8. [Holst 12] S. Holst, E. Schneider, and H. Wunderlich. “Scan test power simulation on gpgpus”. Proceedings IEEE Asian Test Symposium, 2012:155–160. [Hsu 13] S.-C. Hsu. Fault Simulation and Test Pattern Selection for Small Delay Defects Using GPU. Master’s thesis, National Taiwan University, 2013. [Huang 99] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu. “Sub 50-nm finfet: Pmos”. Proceedings International Electron Devices Meeting, Technical Degest., 1999:67– 70. [Mentor 06] Mentor Inc. “Understanding how to run timing-aware ATPG”. Application Note, 2006. [Synopsys 07] Synopsys Inc., ct, “SOLD Y-2007, vol. 1-3,” 2007. [Iyengar 90] V. Iyengar, B. K. Rosen, and J. Waicukauski. “On computing the sizes of detected delay faults”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(3), 1990:299–312. [Kajihara 06] S. Kajihara, S. Morishima, A. Takuma, X. Wen, T. Maeda, S. Hamada, and Y. Sato. “A framework of high-quality transition fault atpg for scan circuits”. Proceedings IEEE International Test Conference, 2006:1–6. [Kajihara 95] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy. “Cost-effective generation of minimal test sets for stuck-at faults in combinational logic circuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(12), 1995:1496–1504. [Lee 06] H. Lee, S. Natarajan, S. Patil, and I. Pomeranz. “Selecting highquality delay tests for manufacturing test and debug”. Proceedings IEEE International Symposium on Defects and Fault Tolerance in VLSI Systems, 2006:59–70. [Xu 10] H. Li, D. Xu, Y. Han, K.-T. Cheng, and X. Li. “ngfsim : A gpu-based fault simulator for 1-to-n detection and its applications”. Proceedings IEEE International Test Conference, 2010:1–10. [Li 10] M. Li and M. Hsiao. “Fsimgp2: An efficient fault simulator with gpgpu”. Proceedings IEEE Test Symposium, 2010:15–20. [Liao 14] K.-Y. Liao. Graphical Processing Unit Based High Quality ATPG. Ph.D. thesis, National Taiwan University, 2014. [Lin 13] C.-W. Lin, M.-T. Chao, and C.-C. Hsu. “Investigation of gate oxide short in finfets and the test methods for finfet srams”. IEEE VLSI Test Symposium, 2013:1–6. [Lin 06] X. Lin, K.-H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo. “Timing-aware atpg for high quality at-speed testing of small delay defects”. Proceedings IEEE Asian Test Symposium, 2006:139–146. [Liu 12] Y. Liu and Q. Xu. “On modeling faults in finfet logic circuits”. Proceedings IEEE International Test Conference, 2012:1–9. [Mak 04] T. M. Mak, A. Krstic, K.-T. Cheng, and L.-C. Wang. “New challenges in delay testing of nanometer, multigigahertz designs”. IEEE Design Test of Computers, 21(3), 2004:241–248. [Mitra 04] S. Mitra, E. Volkerink, E. McCluskey, and S. Eichenberger. “Delay defect screening using process monitor structures”. Proceedings IEEE VLSI Test Symposium, 2004:43–48. [Nigh 00] P. Nigh and A. Gattiker. “Test method evaluation experiments and data”. Proceedings IEEE International Test Conference, 2000:454–463. [Nowak 04] E. Nowak, I. Aller, T. Ludwig, K. Kim, R. Joshi, C.-T. Chuang, K. Bernstein, and R. Puri. “Turning silicon on its edge [double gate cmos/finfet technology]”. IEEE Circuits and Devices Magazine, 20(1), 2004:20–31. [Nvidia12] NVidia. “Cuda c best practices guide (version 4.1)”. Available online: http://ptm.asu.edu, 2012. [Peng 10] K. Peng, J. Thibodeau, M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. “A novel hybrid method for sdd pattern grading and selection”. Proceedings VLSI Test Symposium, 2010:45–50. [PTM 12] PTM, N. Integration, and M. Group. “Predictive techology model website”. http://ptm.asu.edu, 2012. [Qiu 03] W. Qiu and D. Walker. “An efficient algorithm for finding the k longest testable paths through each gate in a combinational circuit”. Proceedings IEEE International Test Conference, 1, 2003:592–601. [Qiu 04] W. Qiu, L.-C. Wang, D. Walker, D. Reddy, X. Lu, Z. Li, W. Shi, and H. Balachandran. “K longest paths per gate (klpg) test generation for scan-based sequential circuits”. Proceedings International Test Conference, 2004:223–231. [Sato 05a] Y. Sato, S. Hamada, T. Maeda, A. Takatori, and S. Kajihara. “Evaluation of the statistical delay quality model”. Proceedings Asia and South Pacific Design Automation Conference, 1, 2005:305–310 Vol. 1. [Sato 05b] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kajihara. “Invisible delay quality - sdqm model lights up what could not be seen”. Proceedings International Test Conference, 2005:9 pp.– 1210. [Shao 02] Y. Shao, I. Pomeranz, and S. Reddy. “On generating high quality tests for transition faults”. Proceedings IEEE Asian Test Symposium, 2002:1–8. [Simsir 10] M. Simsir, A. Bhoj, and N. Jha. “Fault modeling for finfet circuits”. Proceedings IEEE/ACM International Symposium on Nanoscale Architectures, 2010:41–46. [Spinner 08] S. Spinner, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-T. Cheng. “Automatic test pattern generation for interconnect open defects”. IEEE VLSI Test Symposium, 2008:181–186. [Tseng 01] C.-W. Tseng and E. McCluskey. “Multiple-output propagation transition fault test”. Proceedings International Test Conference, 2001:358–366. [Waicukauski 08] J. Waicukauski, E. Lindbloom, B. K. Rosen, and V. Iyengar. “Transition fault simulation”. IEEE Design Test of Computers, 4(2), 1987:32–38. [Wu 91] D. Wu and C. Radke. “Delay test effectiveness evaluation of lssdbased vlsi logic circuits”. Proceedings ACM/IEEE Design Automation Conference, 1991:291–295. [Yilmaz 08b] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. Proceedings IEEE VLSI Test Symposium. [Yilmaz 08a] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. “Interconnect-aware and layout-oriented test-pattern selection for small-delay defects”. Proceedings IEEE International Test Conference, 2008:1–10. [Yilmaz 11] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. “A metric to target small-delay defects in industrial circuits”. Design Test of Computers, IEEE, 28, 2011:52–61. [Yu 02] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser. “Finfet scaling to 10 nm gate length”. Proceedings International Electron Devices Meeting, 2002:251–254. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57555 | - |
dc.description.abstract | 在先進製程中,標準元件內部的缺陷(cell-internal defects)越來越受到重視,常用來模擬缺陷的錯誤模型(fault model)都假設缺陷發生在標準元件與標準元件之間;除此之外現在也需要準確的公式來模擬微小延遲缺陷(samll delay defect)以及內部缺陷,部分的內部缺陷可以使用微小延遲缺陷模型來模擬。此論文提出一個針對內部缺陷的時序感知邏輯閘轉態窮舉測試向量選擇器;我們的 TARGET 測試向量結合了標準元件感知(Cell-aware)以及時序感知(Timing-aware)兩個自動測試向量產生器的優點,他試圖使用不同的邏輯閘輸入端組合引發相同的邏輯閘轉態。我們提出了 TARGET 涵蓋率(Coverage)以及 TARGET 統計延遲程度(SDQL)去衡量產生的測試向量品質。TARGET 並不需要窮舉每個標準元件使用以積體電路為重點的模擬程式(SPICE),與傳統 N 次偵測以及時序感知自動測試向量比起來,TARGET測試向量有較好的 TARGET 測試涵蓋率以及較短的測試向量數。 | zh_TW |
dc.description.abstract | In advanced technology, cell-internal defects gain more attention than before. Those well-known fault models all assume defects are between standard library cells. Besides, accurate metric is needed for modeling small delay defects and internal defects. Some cell-internal defects can be modeled as small delay faults. This thesis presents a timing-aware gate exhaustive transition fault (TARGET) fault simulation and test pattern selection for cell-internal defects. Our TARGET test patterns combine both the benefits of cell-aware and timing-aware ATPG. It tries to launch gate output transitions from as many different gate input transitions as possible. We proposed TARGET coverage and TARGET SDQL to evaluate the quality of our test patterns. TARGET does not require exhaustive SPICE simulation to characterize each library cell. Compared with traditional $N$-detect and timing-aware test patterns, the proposed TARGET test patterns have better TARGET coverage given the same test length. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:51:17Z (GMT). No. of bitstreams: 1 ntu-103-R01943093-1.pdf: 9436352 bytes, checksum: 94e152bf46cc644db17ccb5ad9ddcac3 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要iii
Abstract iv Table of Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Proposed Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Background 9 2.1 Fault Modeling on FinFET . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Intorduction to FinFET . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Single Defect Affecting Single Gate . . . . . . . . . . . . . . . . . 10 2.1.3 Single Defect Affecting Multiple Gates . . . . . . . . . . . . . . . . 12 2.2 Test Metrics for Small Delay Defect (SDD) . . . . . . . . . . . . . . . . . 14 2.2.1 Statistical Delay Quality Model (SDQM) . . . . . . . . . . . . . . . 14 2.2.2 Dropping Based on Slack Margin (DSM) . . . . . . . . . . . . . . . 17 2.2.3 Delay Test Coverage (DTC) . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Automatic Test Pattern Generation (ATPG) . . . . . . . . . . . . . . . . . 19 2.3.1 Automatic Test Pattern Generation for SDD . . . . . . . . . . . . . 19 2.3.2 Cell Aware Automatic Test Pattern Generation . . . . . . . . . . . . 24 2.4 Sensitized Path Delay Calculation . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Transition Arrival Time . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.2 Fault Effect Propagation Time . . . . . . . . . . . . . . . . . . . . . 29 2.5 Upper Bounds Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.1 Static Upper Bounds Analysis . . . . . . . . . . . . . . . . . . . . . 31 2.5.2 Dynamic Upper Bounds Analysis . . . . . . . . . . . . . . . . . . . 32 2.6 Graphic Processing Unit (GPU) . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.1 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.2 Past Research for GPU Simulation . . . . . . . . . . . . . . . . . . 36 Chapter 3 Proposed Techniques 39 3.1 Simulation Results on FinFET Model . . . . . . . . . . . . . . . . . . . . 39 3.2 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 TARGET Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 TARGET Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 TARGET SDQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Propagation Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Arrival Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.6 Compact Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.7 Untimed Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.8 Test Pattern and Fault Dropping Criterion . . . . . . . . . . . . . . . . . . 55 3.9 Timed Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 Two-stage Greedy Test Pattern Selection . . . . . . . . . . . . . . . . . . . 59 Chapter 4 Experimental Results 61 4.1 Compared with other ATPG . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Effectiveness of Pattern/Fault Drop . . . . . . . . . . . . . . . . . . . . . 64 Chapter 5 Discussion and Future Work 66 Chapter 6 Summary 68 Reference 70 | |
dc.language.iso | en | |
dc.title | 針對內部缺陷的時序感知邏輯閘轉態窮舉測試向量選擇 | zh_TW |
dc.title | TARGET:Timing-AwaRe Gate Exhaustive Transition
Fault Simulation and Test Pattern Selection for Cell-internal Defects | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李進福(Jin-Fu Li),饒建奇(Jiann-chyi Rau) | |
dc.subject.keyword | 測試向量自動生產器,邏輯閘內部缺陷,邏輯閘窮舉轉態, | zh_TW |
dc.subject.keyword | GPU,test selection,cell-internal defect,small delay faults, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-24 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 9.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。