請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57553
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
dc.contributor.author | Yu Tzeng | en |
dc.contributor.author | 曾宇 | zh_TW |
dc.date.accessioned | 2021-06-16T06:51:12Z | - |
dc.date.available | 2014-08-17 | |
dc.date.copyright | 2014-08-17 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-22 | |
dc.identifier.citation | [1] R. Levy, 'Theory of direct-coupled-cavity filters,' IEEE Trans. Microw. Theory Tech., vol. 15, no. 6, pp. 340-348, June 1967.
[2] H. Uchimura, T. Takenoshita, and M. Fujii, 'Development of the ‘laminated waveguide’,' IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998. [3] D. Deslandes and K. Wu, 'Integrated microstrip and rectangular waveguide in planar form,' IEEE Microw. Wireless Comp. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001. [4] 沈澤旻,”多層矩型波導帶通濾波器的研製”,國立台灣大學碩士論文,2006年6月 [5] T.-M. Shen, C.-F. Chen, T.-Y. Huang, and R.-B. Wu, 'Design of vertically stacked waveguide filters in LTCC,' IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007. [6] T.-M. Shen, T.-Y. Lin, T.-Y. Huang, and R.-B. Wu, 'A vertically stacked quasi elliptic waveguide filter with crossly coupling vias,' Proc. Asia Pacific Microw. Conf., pp. 667-670, 2007. [7] H.-Y. Chien, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, 'Design of a vertically stacked substrate integrated folded-waveguide resonator filter in LTCC,' Proc. Asia Pacific Microw. Conf., pp. 675-678, 2007. [8] H.-Y. Chien, T.-M. Shen, T.-Y. Huang, W.-H. Wang, and R.-B. Wu, 'Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC,' IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1774-1782, July 2009. [9] T.-Y. Huang, T.-M. Shen, B.-J. Chen, H.-Y. Chien, and R.-B. Wu, 'Design of miniaturized vertically stacked SIW filters in LTCC,' Proc. 39th European Microw. Conf., pp. 413-416, Sep. 2009. [10] T.-Y. Huang, T.-M. Shen, and R.-B. Wu, 'A miniaturized bandpass filter using quadruple folded laminated waveguide cavity resonators in LTCC,' Proc. Asia Pacific Microw. Conf., pp. 99-102, 2010. [11] G.-H. Lee, C.-S. Yoo, J.-G. Yook, and J.-C. Kim, 'SIW quasi-elliptic filter based on LTCC for 60-GHz application,' Proc. 4th European Microw. Integr. Circuits Conf., pp. 204-207, Sep. 2009. [12] X.-P. Chen and K. Wu, 'Substrate integrated waveguide cross-coupled filter with negative coupling structure,' IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008. [13] K. Gong, W. Hong, Y. Zhang, P. Chen, and C.-J. You, 'Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling,' IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3071-3078, Oct. 2012. [14] P. Chu , W. Hong , L. Dai, H. Tang, J. Chen, Z. Hao, X. Zhu, and K. Wu, 'A planar bandpass filter implemented with a hybrid structure of substrate integrated waveguide and coplanar waveguide,' IEEE Trans. Microw. Theory Tech., vol. 62, no. 2, pp. 266-274, Feb. 2014. [15] B.-J. Chen, T.-M. Shen, and R.-B. Wu, 'Dual-band vertically stacked laminated waveguide filter design in LTCC technology,' IEEE Trans. Microw. Theory Tech., vol. 57, no. 6, pp.1554-1562, June 2009. [16] C.-C Chen, B.-J. Chen, T.-M. Shen, and R.-B. Wu, 'Dual-band laminated waveguide filter design in multilayer LTCC,' Proc. Asia Pacific Microw. Conf., pp. 900-903, 2011. [17] T.-M. Shen, T.-Y. Huang, C.-F. Chen, and R.-B. Wu, 'A laminated waveguide magic-T with bandpass filter response in multilayer LTCC,' IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 584-592, Mar. 2011. [18] C.-C. Chen, T.-M. Shen, T.-Y. Huang, C.-F. Chen, and R.-B. Wu, 'An integrated filtering antenna array with 180 degree hybrid for SiP front end module,' Proc. Asia Pacific Microw. Conf., pp. 881-883, 2012. [19] 陳建佳,”高整合度毫米波波導被動元件於低溫共燒陶瓷系統封裝技術之應用”,國立台灣大學碩士論文,2012年6月 [20] W.-L. Tsai, T.-M. Shen, B.-J. Chen, T.-Y. Huang, and R.-B. Wu, 'Design of single branch laminated waveguide diplexers using modal orthogonality,' IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4079-4089, Dec. 2013. [21] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, 'Microstrip diplexers design with common resonator sections for compact size, but high isolation,' IEEE Trans., Microw. Theory Tech., vol. 54, no. 5, pp. 1945-1952, May 2006. [22] C.-F. Chen, T.-Y. Huang, T.-M. Shen, and R.-B. Wu, 'A miniaturized microstrip common resonator triplexer without extra matching network,' Proc. Asia Pacific Microw. Conf., pp. 1439-1442, 2006. [23] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, 'Design of multimode net-type resonators and their applications to filters and multiplexers,' IEEE Trans., Microw. Theory Tech., vol. 59, no. 4, pp. 848-856, Apr. 2011. [24] C.-W. Tang and C.-T. Tseng, 'Design of a packaged microstrip triplexer with star-junction topology,' Proc. 42nd European Microw. Conf., pp. 459-462, Oct. 2012. [25] S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, 'Compact and high-isolation quadruplexer using distributed coupling technique,' IEEE Microwave Wireless Comp. Lett., vol. 21, no. 4, pp. 197-199, Apr. 2011. [26] C.-F. Cheng, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microwave Wireless Comp. Lett., vol. 21, no. 10, pp. 534–536, Oct. 2011. [27] J. R. Montejo-Garai, J. A. Ruiz-Cruz, and J. M. Rebollar, 'Full-wave design of H-plane contiguous manifold output multiplexers using the fictitious reactive load concept,' IEEE Trans., Microw. Theory Tech., vol. 53, no. 8, pp. 2628-2632, Aug. 2005. [28] H. Hu, K.-L. Wu, and R. J. Cameron, “Stepped circular waveguide dual-mode filters for broadband contiguous multiplexers,” IEEE Trans., Microw. Theory Tech., vol. 61, no. 1, pp. 139-145, Jan. 2013. [29] 陳錡楓、陳建佳、劉婉柔、蔡涵昀、沈澤旻、黃定彝、吳瑞北,”以低溫共燒陶瓷發展E-頻段雙工器”,台揚科技股份有限公司建教合作專題研究計畫結案報告,2012年8月 [30] D. Hou, W. Hong, L. Tian, J. Liu, and H. Tang, “A planar triplexer based on substrate integrated waveguide technology for TD-SCDMA applications,” Proc. Asia Pacific Microw. Conf., pp. 2584-2587, Dec. 2009. [31] H. J. Tang, W. Hong, J. X. Chen, G. Q. Luo, and K. Wu, 'Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,' IEEE Trans., Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007. [32] N. Athanasopoulos, D. Makris, and K. Voudouris, 'Development of a 60 GHz substrate integrated waveguide planar diplexer,' IEEE MTT-S International Microw. Workshop Ser. on Millim. Wave Integr. Technologies, pp. 128-131, 2011. [33] C. X. Zhou, Y. X. Guo, S. L. Yan, and Z. L. Wang, 'Multilayered LTCC triplexer with star-junction topology,' Electronics Lett., vol. 47, pp. 1131-1133, Aug. 2011. [34] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001. [35] D. M. Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57553 | - |
dc.description.abstract | 本篇論文主要提出毫米波頻段上之濾波器及三工器的設計,並以基板合成波導的結構來實現。第一部分使用低溫共燒陶瓷技術,研製兩個二合一帶通濾波器的整合電路。第二部分則是在電路板上研製一個可實現於毫米波頻段、無匹配電路之三工器設計。
第一部分的設計概念是將兩個濾波器電路共用相同的共振腔,整合為單一個二合一帶通濾波器電路。利用基板合成波導所形成的共振腔中,各模態彼此之間場型的正交性,分別由不同模態控制不同路徑的濾波器響應。因此,共振腔之間在不同模態下的耦合係數可藉由選取適當的槽線位置去獨立控制。同時,藉由選擇適當的饋入位置,可以由不同的埠單獨激發出單一個模態。饋入開槽的選擇需確保模態維持其正交性,使兩模態所分別控制的濾波器響應之間能保有良好的隔離度,以便使該四埠整合電路具有兩路獨立的濾波器響應。二合一帶通濾波器相較於一般的濾波器電路,能利用相同數量的共振腔多設計出一組獨立的濾波器響應,在電路面積的微小化上可以縮小至原始大小的32.6 %。 第二部分則是針對毫米波頻段,提出一個可實現之三工器電路設計架構。其概念是將三個不同頻段之基板合成波導濾波器,分別以分佈式耦合技巧的方式將其分佈在饋入線上不同的位置。藉由在不同頻率下,饋入線上的磁場強度分佈不同,使各頻段之濾波器可以共用同一饋入線。如此,本三工器能省去額外的匹配電路設計,並達到良好的穿透損耗及24 dB以上的隔離度,且在通帶頻率的選擇上具有很高的自由度。 | zh_TW |
dc.description.abstract | This thesis proposes new design concepts for millimeter-wave filters and triplexers based on SIW (substrate integrated waveguide) structures. The first part designs two variations of a two-in-one bandpass filter, implemented on LTCC (Low Temperature Co-fired Ceramics). The second part designs a triplexer without matching network that is realizable on millimeter-wave frequency, and is implemented on circuit boards.
The design concept in the first part is to combine two filters using common resonators into a single two-in-one bandpass filter circuit. This part utilizes the concept of modal orthogonality in the SIW cavities by letting different modes control filter responses in different paths. Therefore, coupling coefficients of each mode between adjacent cavities may be controlled independently through proper locations of the coupling slots. Also, a port may only excite one of the modes with a proper feeding position. In order for the four port integrated circuit to have two independent filter response paths, good isolation between the filter responses must be maintained. Each response is controlled by one of the two orthogonal modes used, therefore, the position of the feeding slot is crucial in keeping the modes orthogonal. The two-in one bandpass filter achieves 32.6 % circuit area miniaturization by providing an additional filter response path using the same amount of cavities of a single bandpass filter. The second part proposes a triplexer design that is realizable in millimeter-wave frequency. The design concept is to use the distributed coupling technique to rearrange the three SIW filters along the feeding line. Each filter may share the common feeding line due to different magnitudes of the magnetic field at different frequencies, therefore the matching network is unnecessary for this design. This triplexer achieves good insertion loss, isolation greater than 24 dB, and has a high freedom in choosing passband frequencies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:51:12Z (GMT). No. of bitstreams: 1 ntu-103-R01942006-1.pdf: 2708525 bytes, checksum: 895c5f04cbc44ce194ef31e37bb0759c (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT V 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1. 研究動機 1 1.2. 文獻回顧 2 1.3. 論文貢獻 4 1.4. 章節內容概述 6 第二章 基礎理論 7 2.1. 轉換函數 7 2.1.1. 基本定義 7 2.1.2. 柴比雪夫響應 8 2.2. 耦合共振器電路 9 2.2.1. 廣義耦合理論 10 2.2.2. 電耦合 11 2.2.3. 磁耦合 13 2.2.4. 混和型耦合 16 2.2.5. 外部品質因子 18 2.3. 基板合成波導共振腔 22 2.3.1. 共振腔的結構 22 2.3.2. 共振腔的共振頻率 23 2.3.3. 共振腔的品質因子 25 2.3.4. 共振腔的耦合結構 27 第三章 共用雙模態共振腔之二合一帶通濾波器 31 3.1. 二合一帶通濾波器之設計概念與規格 31 3.1.1. 設計概念 31 3.1.2. 及 模態之電磁場場型分析 33 3.1.3. 設計規格 34 3.1.4. 耦合矩陣計算 35 3.2. 非對稱饋入之二合一帶通濾波器 36 3.2.1. 耦合結構與饋入電路 37 3.2.2. 電路結構與尺寸 43 3.2.3. 模擬與量測結果 46 3.3. 對稱饋入之二合一帶通濾波器 53 3.3.1. 耦合結構與饋入電路 53 3.3.2. 電路結構及尺寸 55 3.3.3. 模擬與量測結果 58 第四章 運用分佈式耦合技巧之基板合成波導三工器 65 4.1. 運用分佈式耦合技巧之三工器概念與規格 65 4.1.1. 設計概念 65 4.1.2. 設計規格 67 4.1.3. 耦合矩陣計算 68 4.2. 以基板合成波導實現之柴比雪夫濾波器 68 4.2.1. 耦合結構與饋入電路 68 4.2.2. 利用模態頻率交錯抑制通帶外響應 71 4.2.3. 電路結構及尺寸 73 4.3. 運用分佈式耦合技巧設計之三工器 74 4.3.1. 分佈式耦合技巧 74 4.3.2. 電路結構及尺寸 77 4.3.3. 模擬與量測結果 78 4.4. 通帶外響應抑制討論 83 第五章 結論 87 參考文獻 91 | |
dc.language.iso | zh-TW | |
dc.title | 應用於毫米波頻段之基板合成波導濾波器及三工器設計 | zh_TW |
dc.title | esign of Substrate Integrated Waveguide Filters and Triplexers for Millimeter-Wave Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 湯敬文,陳錡楓,張志揚,洪子聖 | |
dc.subject.keyword | 基板合成波導,低溫共燒陶瓷,多模態正交,分佈式耦合,濾波器,三工器, | zh_TW |
dc.subject.keyword | Substrate integrated waveguide,Low temperature co-fired ceramics,Modal orthogonality,Distributed coupling,Filter,Triplexer, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-24 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。