請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57543完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
| dc.contributor.author | Hui-Shan Lo | en |
| dc.contributor.author | 羅慧珊 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:50:44Z | - |
| dc.date.available | 2019-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-23 | |
| dc.identifier.citation | 林沂 (2009)。甘藷SPORAMIN基因受傷調控轉錄因子之選殖及功能性分析。國立台灣大學生命科學院植物科學研究所碩士論文。
陳仕朋 (2013)。The wounding sinal transduction pathway in regulating SPORAMIN expression against herbivory in sweet potato (Ipomoea batatas cv. Tainong 57)。國立台灣大學生命科學院植物科學研究所博士資格考論文。 Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. Asai, S., Ohta, K., and Yoshioka, H. (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20: 1390-1406. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983. Bögre, L., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., Jonak, C., Pollaschek, C., Barker, P., and Huskisson, N.S. (1999). A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11: 101-113. Benedetti, C.E., Xie, D., and Turner, J.G. (1995). COI1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiol. 109: 567-572. Berrocal‐Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29: 23-32. Bethke, G., Unthan, T., Uhrig, J.F., Pöschl, Y., Gust, A.A., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. U.S.A. 106: 8067-8072. Birkenmeier, G.F., and Ryan, C.A. (1998). Wound signaling in tomato plants evidence that ABA is not a primary signal for defense gene activation. Plant Physiol. 117: 687-693. Bishop, P.D., Makus, D.J., Pearce, G., and Ryan, C.A. (1981). Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc. Natl. Acad. Sci. U.A.S 78: 3536-3540. Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radzlejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., and Yancopoulos, G.D. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663-675. Bradshaw Jr, H.D., Hollick, J.B., Parsons, T.J., Clarke, H.R., and Gordon, M.P. (1990). Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol. Biol. 14: 51-59. Brown, R.L., Kazan, K., McGrath, K.C., Maclean, D.J., and Manners, J.M. (2003). A role for the GCC-box in jasmonate-mediated activation of the PDF1. 2 gene of Arabidopsis. Plant Physiol. 132: 1020-1032. Calderini, O., Glab, N., Bergounioux, C., Heberle-Bors, E., and Wilson, C. (2001). A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J. Biol. Chem. 276: 18139-18145. Calderini, O., Bogre, L., Vicente, O., Binarova, P., Heberle-Bors, E., and Wilson, C. (1998). A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111: 3091-3100. Cardinale, F., Meskiene, I., Ouaked, F., and Hirt, H. (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14: 703-711. Carrera, E., and Prat, S. (1998). Expression of the Arabidopsisabi1–1mutant allele inhibits proteinase inhibitor wound‐induction in tomato. Plant J. 15: 765-771. Chadha, K.C., and Brown, S.A. (1974). Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can. J. Bot. 52: 2041-2047. Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410: 37-40. Chen, H.-J., Wang, S.-J., Chen, C.-C., and Yeh, K.-W. (2006). New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci. 171: 367-374. Chen, H., Wilkerson, C.G., Kuchar, J.A., Phinney, B.S., and Howe, G.A. (2005). Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc. Natl. Acad. Sci. 102: 19237-19242. Chen, Y.-C., Siems, W.F., Pearce, G., and Ryan, C.A. (2008). Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J. Biol. Chem. 283: 11469-11476. Cheong, Y.H., Moon, B.C., Kim, J.K., Kim, C.Y., Kim, M.C., Kim, I.H., Park, C.Y., Kim, J.C., Park, B.O., and Koo, S.C. (2003). BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol. 132: 1961-1972. Chico, J.M., Chini, A., Fonseca, S., and Solano, R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11: 486-494. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F., and Ponce, M. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671. Coll, N., Epple, P., and Dangl, J. (2011). Programmed cell death in the plant immune system. Cell Death Differ. 18: 1247-1256. Crews, C.M., Alessandrini, A.A., and Erikson, R. (1991). Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine. Proc. Natl. Acad. Sci. 88: 8845-8849. Cristina, M.S., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621-649. De Moraes, C.M., Lewis, W., and Tumlinson, J.H. (2000a). Examining plant-parasitoid interactions in tritrophic systems. Anais da Sociedade Entomológica do Brasil 29: 189-203. Dempsey, D., and Wobbe, K. (1993). Resistance and Susceptible Responses of Arabidopsis thaliana to Turnip Crinkle Virus. Phytopathology 83: 1021-1029. Ecker, J.R. (2004). Reentry of the ethylene MPK6 module. Plant Cell 16: 3169-3173. Ellis, C., and Turner, J.G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025-1033. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206. Farmer, E.E., and Ryan, C.A. (1992). Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 2-18. Frye, C.A., Tang, D., and Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. 98: 373-378. Fu, S.-F., Chou, W.-C., Huang, D.-D., and Huang, H.-J. (2002). Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 43: 958-963. Fu, S.-F., Lin, W.-P., Ho, S.-L., Chou, W.-C., Huang, D.-D., Yu, S.-M., and Huang, H.-J. (2003). Molecular cloning and characterization of a novel starvation inducible MAP kinase gene in rice. Plant Physiol. Biochem. 41: 207-213. Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., and Zhang, Y. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 18: 1190-1198. Gubler, F., and Jacobsen, J.V. (1992). Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 4: 1435-1441. Gudesblat, G.E., Iusem, N.D., and Morris, P.C. (2007). Guard cell‐specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol. 173: 713-721. Guzman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513-523. Han, L., Li, G.J., Yang, K.Y., Mao, G., Wang, R., Liu, Y., and Zhang, S. (2010). Mitogen‐activated protein kinase 3 and 6 regulate Botrytis cinerea‐induced ethylene production in Arabidopsis. Plant J. 64: 114-127. Hattori, T., Yoshida, N., and Nakamura, K. (1989). Structural relationship among the members of a multigene family coding for the sweet potato tuberous root storage protein. Plant Mol. Biol. 13: 563-572. He, C., Fong, S.H.T., Yang, D., and Wang, G.-L. (1999). BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant Microbe Interact. 12: 1064-1073. He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., and Chen, S.Y. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44: 903-916. Heiling, S., Schuman, M.C., Schoettner, M., Mukerjee, P., Berger, B., Schneider, B., Jassbi, A.R., and Baldwin, I.T. (2010). Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22: 273-292. Heinrich, M., Baldwin, I.T., and Wu, J. (2012). Three MAPK kinases, MEK1, SIPKK, and NPK2, are not involved in activation of SIPK after wounding and herbivore feeding but important for accumulation of trypsin proteinase inhibitors. Plant Mol. Biol. Rep. 30: 731-740. Hettenhausen, C., Baldwin, I.T., and Wu, J. (2013). Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling‐independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytol. 199: 787-799. Higgins, R., Lockwood, T., Holley, S., Yalamanchili, R., and Stratmann, J.W. (2007). Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato. Planta 225: 1535-1546. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297-300. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl Acad. Sci. 103: 12987-12992. Huang, Y., Li, H., Gupta, R., Morris, P.C., Luan, S., and Kieber, J.J. (2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 122: 1301-1310. Ichimura, K., Mizoguchi, T., and Shinozaki, K. (1997). ATMRK1, an Arabidopsis protein kinase related to mammal mixed-lineage kinases and Raf protein kinases. Plant Sci. 130: 171-179. Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., Matsumoto, K., and Shinozaki, K. (1998). Isolation of AtMEKK1 (a MAP Kinase Kinase Kinase)-interacting proteins and analysis of a MAP Kinase cascade in Arabidopsis. Biochem. Biophys. Res. Commun. 253: 532-543. Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S., Hirt, H., and Wilson, C. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7: 301-308. Im, J.H., Lee, H., Kim, J., Kim, H.B., Seyoung, K., Kim, B.M., and An, C.S. (2012). A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response. J. Plant Biol. 55: 303-309. Ishihama, N., Yamada, R., Yoshioka, M., Katou, S., and Yoshioka, H. (2011). Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23: 1153-1170. Jassbi, A.R., Gase, K., Hettenhausen, C., Schmidt, A., and Baldwin, I.T. (2008). Silencing geranylgeranyl diphosphate synthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol. 146: 974-986. Joo, S., Liu, Y., Lueth, A., and Zhang, S. (2008). MAPK phosphorylation‐induced stabilization of ACS6 protein is mediated by the non‐catalytic C‐terminal domain, which also contains the cis‐determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54: 129-140. Kandoth, P.K., Ranf, S., Pancholi, S.S., Jayanty, S., Walla, M.D., Miller, W., Howe, G.A., Lincoln, D.E., and Stratmann, J.W. (2007). Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc. Natl. Acad. Sci. 104: 12205-12210. Kaur, H., Heinzel, N., Schöttner, M., Baldwin, I.T., and Gális, I. (2010). R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol. 152: 1731-1747. Kazan, K., and Manners, J.M. (2011). The interplay between light and jasmonate signalling during defence and development. J. Exp. Bot. 62: 4087-4100. Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441. Koiwa, H., Bressan, R.A., and Hasegawa, P.M. (1997). Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384. Kovtun, Y., Chiu, W.-L., Tena, G., and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. 97: 2940-2945. León, J., Rojo, E., and Sánchez‐Serrano, J.J. (2001). Wound signalling in plants. J. Exp. Bot. 52: 1-9. Leitner, M., Boland, W., and Mithöfer, A. (2005). Direct and indirect defences induced by piercing‐sucking and chewing herbivores in Medicago truncatula. New Phytol. 167: 597-606. Leszczynski, B., Warchol, J., and Niraz, S. (1985). Influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Int. J Trop. Insect. Sci. Li, H.-s., and Oba, K. (1985). Major soluble proteins of sweet potato roots and changes in proteins after cutting, infection, or storage. Agric. Biol. Chem. 49: 737-744. Li, Q., Xie, Q.-G., Smith-Becker, J., Navarre, D.A., and Kaloshian, I. (2006). Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. MPMI. 19: 655-664. Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386-3399. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J., and Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165-178. Ludwig, A.A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., Boller, T., Jones, J.D., and Romeis, T. (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc. Natl. Acad. Sci. 102: 10736-10741. Maeshima, M., Sasaki, T., and Asahi, T. (1985). Characterization of major proteins in sweet potato tuberous roots. Phytochemistry 24: 1899-1902. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet. 26: 403-410. Malone, M., and Alarcon, J.-J. (1995). Only xylem-borne factors can account for systemic wound signalling in the tomato plant. Planta 196: 740-746. Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23: 1639-1653. Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9: 274-280. Matuoka, K., and Chen, K.Y. (2002). Transcriptional regulation of cellular ageing by the CCAAT box-binding factor CBF/NF-Y. Ageing Res. Rev. 1: 639-651. McCormack, E., Tsai, Y.-C., and Braam, J. (2005). Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 10: 383-389. McGrath, K.C., Dombrecht, B., Manners, J.M., Schenk, P.M., Edgar, C.I., Maclean, D.J., Scheible, W.-R., Udvardi, M.K., and Kazan, K. (2005). Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 139: 949-959. Meldau, S., Wu, J., and Baldwin, I.T. (2009). Silencing two herbivory‐activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata's susceptibility to herbivores in the glasshouse and in nature. New Phytol. 181: 161-173. Meng, X., Xu, J., He, Y., Yang, K.-Y., Mordorski, B., Liu, Y., and Zhang, S. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25: 1126-1142. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Nucleic Acids Res. 9: 490-498. Mizoguchi, T., Ichimura, K., Irie, K., Morris, P., Giraudat, J., Matsumoto, K., and Shinozaki, K. (1998). Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett. 437: 56-60. Morris, P.C., Guerrier, D., Leung, J., and Giraudat, J. (1997). Cloning and characterisation of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol. Biol. 35: 1057-1064. Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A., and Hirt, H. (1999). Distinct osmo‐sensing protein kinase pathways are involved in signalling moderate and severe hyper‐osmotic stress. Plant J. 20: 381-388. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19: 118-130. Okushima, Y., Overvoorde, P.J., Arima, K., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Lui, A., and Nguyen, D. (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17: 444-463. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., and Carninci, P. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239-247. Orozco-Cárdenas, M.L., Narváez-Vásquez, J., and Ryan, C.A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191. Pay, A., Jonak, C., Bögre, L., Meskiene, I., Mairinger, T., Szalay, A., Heberle‐Bors, E., and Hirt, H. (1993). The MsK family of alfalfa protein kinase genes encodes homologues of shaggy/glycogen synthase kinase‐3 and shows differential expression patterns in plant organs and development. Plant J. 3: 847-856. Peña-Cortés, H., Fisahn, J., and Willmitzer, L. (1995). Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. 92: 4106-4113. Peña-Cortés, H., Liu, X., Serrano, J.S., Schmid, R., and Willmitzer, L. (1992). Factors affecting gene expression of patatin and proteinase-inhibitor-II gene families in detached potato leaves. Planta 186: 495-502. Pearce, G., Bhattacharya, R., and Chen, Y.-C. (2008). Peptide signals for plant defense display a more universal role. Plant defense signaling peptide 3: 1091-1092. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895-897. Penninckx, I., Eggermont, K., Terras, F., Thomma, B., De Samblanx, G.W., Buchala, A., Métraux, J.-P., Manners, J.M., and Broekaert, W.F. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309-2323. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., and Parker, J.E. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111-1120. Pré, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C.M., and Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 147: 1347-1357. Qiu, J.-L., Zhou, L., Yun, B.-W., Nielsen, H.B., Fiil, B.K., Petersen, K., MacKinlay, J., Loake, G.J., Mundy, J., and Morris, P.C. (2008). Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol. 148: 212-222. Quimby, B.B., Wilson, C.A., and Corbett, A.H. (2000). The interaction between Ran and NTF2 is required for cell cycle progression. Mol. Biol. Cell 11: 2617-2629. Ren, D., Yang, H., and Zhang, S. (2002). Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277: 559-565. Ren, D., Liu, Y., Yang, K.-Y., Han, L., Mao, G., Glazebrook, J., and Zhang, S. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. 105: 5638-5643. Rhoads, D.M., and McIntosh, L. (1992). Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4: 1131-1139. Rombauts, S., Déhais, P., Van Montagu, M., and Rouzé, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 27: 295-296. Rouster, J., Leah, R., Mundy, J., and Cameron‐Mills, V. (1997). Identification of a methyl jasmonate‐responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11: 513-523. Roux, P.P., and Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68: 320-344. Ryan, C.A. (1989). Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores. BioEssays 10: 20-24. Ryan, C.A., and Pearce, G. (2003). Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. 100: 14577-14580. Ryan, C.A., Pearce, G., Scheer, J., and Moura, D.S. (2002). Polypeptide hormones. Plant Cell 14: S251-S264. Ryan, M.G. (1990). Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii. Can. J. For. Res 20: 48-57. Sagi, M., Davydov, O., Orazova, S., Yesbergenova, Z., Ophir, R., Stratmann, J.W., and Fluhr, R. (2004). Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16: 616-628. Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., and Wisman, E. (2001). Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13: 113-123. Schoenbeck, M.A., Samac, D.A., Fedorova, M., Gregerson, R.G., Gantt, J.S., and Vance, C.P. (1999). The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. MPMI. 12: 882-893. Seo, S., Sano, H., and Ohashi, Y. (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11: 289-298. Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H., and Ohashi, Y. (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988-1992. Shen, H., Liu, C., Zhang, Y., Meng, X., Zhou, X., Chu, C., and Wang, X. (2012). OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol. Biol. 80: 241-253. Souer, E., van Houwelingen, A., Kloos, D., Mol, J., and Koes, R. (1996). The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170. Stanković, B., and Davies, E. (1996). Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Letters 390: 275-279. Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117-2127. Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. 89: 6837-6840. Steppuhn, A., Gase, K., Krock, B., Halitschke, R., and Baldwin, I.T. (2004). Nicotine's defensive function in nature. PLoS Biol. 2: e217. Suarez-Rodriguez, M.C., Adams-Phillips, L., Liu, Y., Wang, H., Su, S.-H., Jester, P.J., Zhang, S., Bent, A.F., and Krysan, P.J. (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol. 143: 661-669. Sun, J., Xu, Y., Ye, S., Jiang, H., Chen, Q., Liu, F., Zhou, W., Chen, R., Li, X., and Tietz, O. (2009). Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21: 1495-1511. Tena, G., Boudsocq, M., and Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14: 519-529. Thaler, J.S., Farag, M.A., Paré, P.W., and Dicke, M. (2002). Jasmonate‐deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 5: 764-774. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661-665. Tregear, J.W., Jouannic, S., Schwebel-Dugué, N., and Kreis, M. (1996). An unusual protein kinase displaying characteristics of both the serine/threonine and tyrosine families is encoded by the Arabidopsis thaliana gene ATN1. Plant Sci. 117: 107-119. Umbrasaite, J., Schweighofer, A., Kazanaviciute, V., Magyar, Z., Ayatollahi, Z., Unterwurzacher, V., Choopayak, C., Boniecka, J., Murray, J.A., and Bogre, L. (2010). MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS Biol. 5: e15357. Vallejo, M., Ron, D., Miller, C.P., and Habener, J.F. (1993). C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc. Natl. Acad. Sci. 90: 4679-4683. Van Dam, N.M., Horn, M., Mareš, M., and Baldwin, I.T. (2001). Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J. Chem. Ecol. 27: 547-568. Wang, H., Ngwenyama, N., Liu, Y., Walker, J.C., and Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63-73. Wang, S.-J., Lan, Y.-C., Chen, S.-F., Chen, Y.-M., and Yeh, K.-W. (2002). Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol. Biol. 48: 223-231. Weber, H. (2002). Fatty acid-derived signals in plants. Trends Plant Sci. 7: 217-224. Wen, J.-Q., Oono, K., and Imai, R. (2002). Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol. 129: 1880-1891. Wildon, D., Thain, J., Minchin, P., Gubb, I., Reilly, A., Skipper, Y., Doherty, H., O'donnell, P., and Bowles, D. (1992). Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62-65. Williams, B., and Dickman, M. (2008). Plant programmed cell death: can't live with it; can't live without it. Mol. Plant Pathol. 9: 531-544. Wu, J., Hettenhausen, C., Meldau, S., and Baldwin, I.T. (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19: 1096-1122. Xie, Q., Guo, H.-S., Dallman, G., Fang, S., Weissman, A.M., and Chua, N.-H. (2002). SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167-170. Yalpani, N., and Raskin, I. (1993). Salicylic acid: a systemic signal in induced plant disease resistance. Trends Microbiol. 1: 88-92. Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., and Nan, F. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21: 2220-2236. Yang, K.-Y., Liu, Y., and Zhang, S. (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. 98: 741-746. Yamamizo, C., Kuchimura, K., Kobayashi, A., Katou, S., Kawakita, K., Jones, J.D., Doke, N., and Yoshioka, H. (2006). Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol. 140: 681-692. Yap, Y.-K., Kodama, Y., Waller, F., Chung, K.M., Ueda, H., Nakamura, K., Oldsen, M., Yoda, H., Yamaguchi, Y., and Sano, H. (2005). Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol. 139: 127-137. Yeh, K.-W., Chen, J.-C., Lin, M.-I., Chen, Y.-M., and Lin, C.-Y. (1997). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol. Biol. 33: 565-570. Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D., and Doke, N. (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15: 706-718. Yuasa, T., Ichimura, K., Mizoguchi, T., and Shinozaki, K. (2001). Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 42: 1012-1016. Zhang, S., and Klessig, D.F. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809-824. Zhang, S., and Klessig, D.F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520-527. Zhu, S.-Y., Yu, X.-C., Wang, X.-J., Zhao, R., Li, Y., Fan, R.-C., Shang, Y., Du, S.-Y., Wang, X.-F., and Wu, F.-Q. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19: 3019-3036. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57543 | - |
| dc.description.abstract | SPORAMIN為甘藷中所特有的抗蟲基因,截至目前已發現IbNAC1轉錄因子可直接與SPORAMIN啟動子上的受傷反應元件專一結合,並在受傷訊息傳遞中,正向調控下游SPORAMIN基因表現,此訊息傳遞需要透過MAPK來放大受傷訊息以活化IbNAC1表現。本研究從甘藷cDNA基因庫中選殖出一個可經受傷、茉莉酸與過氧化氫誘導表現的MAPK基因,並命名為IbWIPK。以阿拉伯芥原生質體進行轉錄活性測試,發現相對於單獨表現proIbNAC1::GUS植株,共表現35S::IbWIPK與proIbNAC1::GUS之轉殖株具有較高的GUS 活性,由此得知,IbWIPK具有活化下游IbNAC1基因表現的能力。大量表現IbWIPK之阿拉伯芥轉殖株,相較於空載體轉殖之對照組植物,其對鹽逆境較敏感,並且具有茉莉酸、乙烯及生長素累積過多之植物形態特徵。茉莉酸、乙烯與生長素相關的指標性基因,在大量表現IbWIPK的阿拉伯芥具有較高的表現,因此可推測這些形態是由於過度累積茉莉酸、乙烯與生長素所造成。大量表現IbWIPK的阿拉伯芥轉殖株可藉由增加VSP2、CYSTEINE PROTEINASE與TERPENE SYNTHASE的表現量,來提高轉植株對斜紋夜盜蛾幼蟲的抗性。在大量表現IbWIPK甘藷轉殖株中,SPORAMIN活性也到大幅度的提升。此外,本研究中也釣取IbWIPK上游交互作用之蛋白分子IbMEK1(MAPKK),並進行功能性分析。綜合這些結果,在甘藷抗蟲的機制上,IbWIPK可協同調控茉莉酸與乙烯的抗蟲訊息路徑,進而促使植物達到自我保護的防禦效果。 | zh_TW |
| dc.description.abstract | A NAC-domain transcription factor, IbNAC1, is known to positively regulate SPORAMIN expression, which has been identified as an unique insect-resistant gene in sweet potato, via binding to the wound-responsive cis-element of SPORAMIN promoter. This wound signal transduction requires MAPK cascades to amplify the signal to activate IbNAC1. In this study, we identified a wound-, MeJA- and H2O2-inducible MAPK gene named IbWIPK. Co-transformation of 35S::IbWIPK effector and proIbNAC1::GUS reporter in plant showed the increased GUS activity compared to reporter alone, suggesting that IbWIPK plays a positive and directive role on IbNAC1 activation. Notably, the Arabidposis plants overexpressing IbWIPK (IbWIPK-OE) exhibited sensitive to salt stress and showed JA/ET-response phenotype. The indicator genes of JA, ET and auxin were elevated in IbWIPK-OE plants, implying that those phenotypes were formed by accumulation of JA and auxin. These plants were increasingly resistant to Spodoptera litura due to high expression of VSP2, CYSTEINE PROTEINASE and TERPENE SYNTHASE. In transgenic sweet potato, the activity of SPORAMIN was enhanced by the overexpression of IbWIPK. Moreover, IbMEK1 (MAPKK), which was physically interacted with IbWIPK, was also identified and characterized in this study. Collectively, these results suggest that IbWIPK plays a critical role in coordinating herbivore signal in JA/ET pathway against herbivory in plants. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:50:44Z (GMT). No. of bitstreams: 1 ntu-103-R01b42008-1.pdf: 4970557 bytes, checksum: 03d9e29cbaccc705e460e83720ddd266 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書………………………………………………………………………i 致謝……………………………………………………………………………………ii 中文摘要……………………………………………………………………………...iii Abstract…………………………………………………………………………….…iv 檢索表…………………………………………………………………………...……iii 目錄………………………………………………………………………………..vii 圖表目錄…………………………………………………………………………........x 附圖表目錄……………………………...…………………………………………...xii 第一章 前言 第一節 植物防禦機制…………………………………………………………..1 第二節 植物受傷訊息傳遞路徑………………………………………………..2 第三節 甘藷中的SPORAMIN……………………………………………..7 第四節 NAC轉錄因子…………………………………………………………9 第五節 SPRAMIN 與IbNAC1之上游受傷訊息傳遞路徑…………….…....10 第六節 有絲分裂原蛋白激酶路徑 mitogen-activated protein kinase pathway, MAPK pathway…………………………………………………….….11 第七節 植物MAPKs對生物性逆境防禦之調控…………………………….16 第八節 研究目的………………………………………………………………18 第二章 材料與方法 第一節 基因表現量測定………………………………………………………20 第二節 全長基因序列選殖……………………………………………………25 第三節 基因之啟動子調取…………………………………………………....31 第四節 載體構築………………………………………………………….…...35 第五節 阿拉伯芥基因轉殖與分析……………………………………………41 第六節 甘藷基因轉殖與分析…………………………………………………43 第七節 阿拉伯芥原生質體轉型………………………………………………48 第八節 西方墨點轉印法………………………………………………...…….50 第九節 β葡萄糖甘胺酸(GUS)活性之測定………………………………….53 第十節 酵母菌轉型……………………………………………………………56 第十一節 植株之處理方法……………………………………………………58 第三章 結果 第一部份 甘藷內生性受傷誘導型MAPK基因選殖與功能性分析 第一節 IbWIPK基因選殖與親緣關係樹分析………………………….….....62 第二節 甘藷內生性IbWIPK受傷反應分析及其在各個器官表現情形…….62 第三節 植物賀爾蒙、過氧化氫與非生物逆境對於內生WIPK基因之調控情形…..…………………………………………………………………..63 第四節 IbWIPK在受傷反應下的激酶活性分析……………………..…...….64 第五節 IbWIPK細胞定位分析…………………………………..……..….….65 第六節 IbWIPK對於IbNAC1啟動子的活化能力檢測………….……..….…66 第七節 IbWIPK對調控植物生長型態之關聯性……………………………..67 第八節 IbWIPK-OE阿拉伯芥之逆境抗性分析…………………………..….70 第九節 甘藷之轉基因植株鑑定與SPORAMIN活性分析…………………..72 第十節 IbWIPK受傷誘導之啟動子分析…………………………………..…73 第二部分 IbWIPK上游交互作用之MAPKK-IbMEK1功能性分析 第一節 IbMEK1基因釣取與親緣關係樹分析………….…………………….77 第二節 IbWIPK與IbMEK1交互作用之探討…………...………………...….77 第三節 IbMEK1細胞定位分析………………………….…………………....78 第四節 甘藷內生性MEK1空間分布表現情形與受傷誘導分析..…….…….79 第五節 植物賀爾蒙與鹽逆境對於內生MEK1基因的調控情……….…..….79 第六節 IbMEK1對proIbNAC1之轉錄活性檢測……………………......……80 第七節 IbMEK1之功能性分析…………………………………….………….81 第八節 甘藷之轉基因植株建立與生物逆境分析……………………………81 第四章 討論 第一節 探討IbWIPK表現之機制……………………………….……….……83 第二節 IbWIPK之功能性分析研究……………………………….……..…...86 第三節 IbWIPK啟動子序列與調控機制…………………………..…..….….90 第四節 IbMEK1在甘藷中所扮演的角色………………………………....…..92 第五節 未來展望……………………………………………………………....95 參考文獻…………………………………………………………………………..…97 圖表…………………………………………………………………………….…...110 附圖表……………………………………………………………………………....151 圖表目錄 圖一 、IbWIPK與其他物種MAPK之親緣演化與胺基酸序列分析…….110 圖二、IbWIPK與菸草WIPK、SIPK、NTF4及阿拉伯芥MPK3、4、6胺基酸編碼序列比對…………………………………………………………………111 圖三、IbWIPK受傷誘導反應與空間分佈表現情形…………………………..112 圖四、IbWIPK可受茉莉酸、H2O2處理與高鹽逆境可誘導表現…………….....113 圖五、受傷處理後之甘藷激酶活性檢定…………………………………………114 圖六、IbWIPK融合螢光蛋白表現載體構築示意圖……………………………...115 圖七、IbWIPK胞內定位分析……………………………………………………...116 圖八、IbWIPK對於IbNAC1啟動子轉錄活性分析…………………………….117 圖九、35S::IbWIPK載體構築示意圖………………………………………….….118 圖十、阿拉伯芥大量表現IbWIPK轉殖株鑑定與基因表現量分析…………..….119 圖十一、IbWIPK-OE轉殖阿拉伯芥IbWIPK激酶活性分析……………………..120 圖十二、大量表現IbWIPK對阿拉伯芥根部發育型態之影響………………..….121 圖十三、過度表現IbWIPK對阿拉伯芥花期調控之影響………………………...122 圖十四、IbWIPK-OE轉殖阿拉伯芥植物外觀型態觀察…………………123 圖十五、IbWIPK-OE與EV轉殖阿拉伯芥葉片具有提早黃化之特徵……………124 圖十六、大量表現甘藷WIPK對於下游荷爾蒙指標性基因表現量之影響……..125 圖十七、大量表現IbWIPK轉殖阿拉伯芥可提高植株對斜紋夜盜蛾幼蟲之抗..126 圖十八、大量表現IbWIPK之阿拉伯芥會降低植株對鹽逆境之耐受性………..127 圖十九、大量表現IbWIPK可提植株體內H2O2之含量…………………………..128 圖二十、大量表現IbWIPK之轉基因甘藷具有較高活性的SPORAMIN…...129 圖二十一、IbWIPK啟動子cis-element序列預測圖………………………………130 圖二十二、proIbWIPK::GUS載體構築示意圖………………………………...…131 圖二十三、甘藷WIPK啟動子可受受傷、茉莉酸、H2O2與水楊酸誘導活化…132 圖二十四、阿拉伯芥proIbWIPK轉殖株組織差異性表現……………………….133 圖二十五、甘藷MEK1與其他物種之MAPKK親緣演化分析……………...……134 圖二十六、IbWIPK酵母菌雙雜合載體構築示意圖……………………….……135 圖二十七、IbMEK1酵母菌雙雜合載體構築示意圖……………………………..136 圖二十八、IbWIPK與IbMEK1存在交互作用之關係…………………………....137 圖二十九、IbMEK1融合螢光蛋白表現載體構築示意圖…………………….…138 圖三十、IbMEK1胞內定為分析……………………………………………….…..139 圖三十一、甘藷IbMEK1受傷誘導反應與空間分佈表現情形………………..…140 圖三十二、外加賀爾蒙與鹽逆境處理對甘藷MEK1表現情形的影響……...…141 圖三十三、甘藷MEK1對於IbMAC啟動子轉錄活性分析…………………….142 圖三十四 、35S::IbMEK1載體構築示意圖……………………………………..143 圖三十五、阿拉伯芥大量表現IbMEK1轉殖株鑑定與基因表現量分析………144 圖三十六、大量表現IbMEK1轉基因甘藷轉鑑定與植株型態分析……………145 圖三十七、大量表現IbMEK1可增加甘藷對斜紋夜盜蛾幼蟲之抗性…………146 圖三十八、IbWIPK調控甘藷抗蟲防禦機制之假說模型…………………….…147 表一、利用PlantCARE預測可能存在於IbWIPK啟動子上之cis-element……148 表二、對已發表之MAPK 進行NLS序列預測………………………………....149 附圖表目錄 附圖一、proIbNAC1::GUS轉殖甘藷與轉殖阿拉伯芥………………………..…151 附圖二、pERK1/2抗體專一性檢測……………………………………………....152 附圖三、甘藷轉殖流程圖…………………………………………………………153 附表一、本研究所使用之引子序列總整理…………………………...………….154 | |
| dc.language.iso | zh-TW | |
| dc.subject | SPORAMIN | zh_TW |
| dc.subject | IbNAC1 | zh_TW |
| dc.subject | MAPK | zh_TW |
| dc.subject | 受傷逆境 | zh_TW |
| dc.subject | 抗蟲 | zh_TW |
| dc.subject | wounding | en |
| dc.subject | IbNAC1 | en |
| dc.subject | MAPK | en |
| dc.subject | SPORAMIN | en |
| dc.subject | anti-herbivore | en |
| dc.title | 功能性分析甘藷之IbWIPK及IbMEK1參與生物性逆境抗性之研究 | zh_TW |
| dc.title | Functional characterization of IbWIPK and IbMEK1 involved in biotic stress tolerance in sweet potato | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳克強(Ke-qiang Wu),鄭秋萍(Chiu-Ping Cheng),林棋財(Chi-Tsai Lin),王恆隆(Heng-Long Wang) | |
| dc.subject.keyword | SPORAMIN,IbNAC1,MAPK,受傷逆境,抗蟲, | zh_TW |
| dc.subject.keyword | SPORAMIN,IbNAC1,MAPK,wounding,anti-herbivore, | en |
| dc.relation.page | 157 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
