請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57536完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖婉君(Wanjiun Liao) | |
| dc.contributor.author | Kun-Lin Ho | en |
| dc.contributor.author | 何昆霖 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:50:25Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2014-08-01 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-23 | |
| dc.identifier.citation | [1] T. Han and N. Ansari, “Optimizing cell size for energy saving in cellular networks with hybrid energy supplies,” IEEE Global Communications Conference (GLOBECOM), pp.5189–5193, Dec. 2012.
[2] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: A survey, some research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 524–540, Fourth Quarter 2011. [3] G. Piro, M. Miozzo, G. Forte, N. Baldo, L. Grieco, G. Boggia, and P. Dini, “Hetnets powered by renewable energy sources: Sustainable next-generation cellular networks,” IEEE Internet Computing, vol. 17, no. 1, pp. 32–39, Jan.-Feb. 2013. [4] M. McDermott. (2009) 100+ solar-powered Ericsson cell phone base stations coming to Africa. [Online]. Available: http://www.treehugger.com/clean-technology/100-solar-powered-ericsson-cell-phone-base-stations-coming-toafrica.html. [5] K. Heimerl and E. Brewer, “The village base station,” in Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, pp. 1–2, 2010. [6] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 10–21, June 2011. [7] Nokia Siemens Networks, “2020: Beyond 4G – radio evolution for the gigabit experience,” White Paper, 2011. [8] J. Gong, S. Zhou, Z. Niu, and J. S. Thompson, “Energy-aware resource allocation for energy harvesting wireless communication systems,” IEEE Vehicular Technology Conference (VTC Spring), pp.1–5, June 2013. [9] D. Ng, E. Lo, and R. Schober, “Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station,” IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3412–3427, July 2013. [10] H. S. Dhillon, Y. Li, P. Nuggehalli, Z. Pi, and J. G. Andrews, “Fundamentals of base station availability in cellular networks with energy harvesting,” IEEE Global Communications Conference (GLOBECOM), pp.4110–4115, Dec. 2013. [11] K. Tutuncuoglu and A. Yener, “Short-term throughput maximization for battery limited energy harvesting nodes,” IEEE International Conference on Communications (ICC), pp.1–5, June 2011. [12] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting communication system,” IEEE Transactions on Communications, vol. 60, no. 1, pp. 220–230, Jan. 2012. [13] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications with energy harvesting constraints,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4808–4818, Sep. 2012. [14] M. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optimal packet scheduling on an energy harvesting broadcast link,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1721–1731, Sep. 2011. [15] O. Orhan, D. Gunduz, and E. Erkip, “Throughput maximization for an energy harvesting communication system with processing cost,” IEEE Information Theory Workshop (ITW), pp.84–88, Sep. 2012. [16] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in energy harvesting sensor networks,” ACM Transactions on Embedded Computing Systems (TECS), vol. 6, no. 4, pp. 32, 2007. [17] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan, “Adaptive duty cycling for energy harvesting systems,” in Proceedings of the International Symposium on Low Power Electronics and Design, pp.180–185, Oct. 2006. [18] O. Arnold, F. Richter, G. P. Fettweis, and O. Blume, “Power consumption modeling of different base station types in heterogeneous cellular networks,” Future Network and Mobile Summit, pp.1–8, June 2010. [19] P. Frenger, P. Moberg, J. Malmodin, Y. Jading, and I. Godor, “Reducing energy consumption in LTE with cell DTX,” IEEE Vehicular Technology Conference (VTC Spring), pp.1–5, May 2011. [20] S. Bhaumik, G. Narlikar, S. Chattopadhyay, and S. Kanugovi, “Breathe to stay cool: adjusting cell sizes to reduce energy consumption,” in Proceedings of the first ACM SIGCOMM workshop on Green networking, 2010. [21] C. Peng, S. Lee, S. Lu, H. Luo, and H. Li, “Traffic-driven power saving in operational 3G cellular networks,” in Proceedings of the 17th annual international conference on Mobile computing and networking, 2011. [22] IST-4-02-7756 WINNER II , D1.1.2 V1.2 WINNER II Channel Models, Sep. 2007. [23] F. Richter, A. Fehske, and G. P. Fettweis, “Energy efficiency aspects of base station deployment strategies for cellular networks,” IEEE Vehicular Technology Conference Fall (VTC 2009-Fall), pp.1–5, Sep. 2009. [24] A. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Transactions on Information Theory, vol. 43, no. 6, pp. 1986–1992, Nov. 1997. [25] S. P. Boyd and L. Vandenberghe, Convex optimization, 2004. [26] S. Martello and P. Toth, Knapsack problems. Wiley New York, 1990. [27] I. Ashraf, H. Claussen, and L. T. Ho, “Distributed radio coverage optimization in enterprise femtocell networks,” IEEE International Conference on Communications (ICC), pp.1–6, May 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57536 | - |
| dc.description.abstract | 對汲取來的能源做有效率的利用在綠能蜂巢式網路中是一個重要的設計目標。在這篇論文裡,我們研究了使用再生能源的小型基地台在異質性蜂巢式網路的容量最大化問題。具體來說,在同時滿足能源因果與電池容量的限制下,我們嘗試最大化每一個從環境汲取能量(例如:太陽能與風能)的小型基地台的平均功率。在有傘細胞基地台的涵蓋保證下,我們研究藉由小型基地台的睡醒排程運作與功率控制達到容量提高的潛在可能。我們在對於這個混合整數最佳化問題做線性規劃鬆弛後提供一個容量最大化的緊湊上界並且設計一個能夠從線性規劃鬆弛後的結果找出可行解的方法。對於這個NP困難的混合整數最佳化問題,我們在基於推導出的最佳睡醒行程與功率分配的重要特性下,提出一個能得到近似最佳解的多項式時間啟發式演算法,動態能量延遲排程(DEDS)。只要小型基地台能夠配備足夠大容量的電池,由我們提出的演算法就能找到最佳的網路容量。此外,在電池容量小的情況下,線性轉二元方法也有很好的表現。在模擬結果下,與一個採用傾向保持醒來排程的基地台相比,我們呈現出我們所提出來的演算法與設計的方法能夠增加大約25%的系統容量。我們也發現甚至在有採用最佳功率分配的情況下,對於想要最大化網路容量,總是傾向將一個小型基地台維持在開啟的狀態可能不會總是一個好的策略,特別是對於一個在異構蜂窩網路下受限於干擾的小型基地台。睡醒機制排程能夠有效率的增加基地台容量。 | zh_TW |
| dc.description.abstract | Efficient energy utilization of harvested energy is a key design goal for green cellular networks. In this thesis, we investigate the capacity maximization problem for heterogeneous cellular networks with renewable energy harvested by small cells. Specifically, we try to maximize the average capacity of each small cell with the harvested energy from the environments (e.g., solar and wind) while satisfying the constraints on energy causality and battery capacity. With the coverage preserved by the umbrella cell, we investigate the potential of capacity improvement by joint sleep-awake scheduling operations and power control of small cells. We provide a tight upper bound for the maximum capacity by linear programming relaxation of the mixed-integer problem and design a method to derive feasible approximate solution from the results of linear programming relaxation. Based on the key properties derived for optimal sleep-awake schedules and power allocation patterns, we propose a heuristic polynomial-time near-optimal algorithm, Dynamic Energy Deferment Scheduling (DEDS), for this mixed-integer optimization problem which is NP-hard. The capacity obtained by our proposed heuristic algorithm can approach the maximum capacity as long as the small cell can be equipped with a battery with sufficiently large capacity. Also, the Linear-to-Binary method has good performance when the battery capacity is small. Compared with cells applying greedy-on schedules, we demonstrate by simulations that our proposed algorithm and designed method can increase the system capacity by 25%. We also find that even when the optimal power allocation is applied, always attempting to keep a small cell in active state may not always be a good strategy for capacity maximization, especially for interference-limited cells in HetNets. The sleep-awake scheduling can effectively enhance cell capacity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:50:25Z (GMT). No. of bitstreams: 1 ntu-103-R01942060-1.pdf: 2781837 bytes, checksum: dfd10155aea5e41a9d312923b7887623 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Feasibility Analysis 2 1.1.2 Scenario Selection 2 1.2 Related Works 3 1.3 Motivation and Contribution 4 1.4 Thesis Organization 6 Chapter 2 System Architecture 7 2.1 Network Scenario 7 2.2 BS Operation Model 8 2.3 BS Power Consumption Model 8 2.4 Channel Model 9 2.5 Link Capacity Model 10 Chapter 3 Problem Formulation 11 3.1 Transmit Power Control for Small Cells 11 3.2 Joint Sleep-Awake Scheduling and Power Control for Small Cells 16 Chapter 4 Proposed Algorithms 20 4.1 Linear-to-Binary Method 21 4.1.1 Linear Programming Relaxation 21 4.1.2 Linear to Binary 22 4.2 Dynamic Energy Deferment Scheduling 23 4.2.1 Key Properties for Joint Sleep-Awake Scheduling and Power Control 24 4.2.2 Dynamic Energy Deferment Scheduling 32 Chapter 5 Performance Evaluation 36 5.1 Capacity Maximization by Power Control with Grid, Solar, and Wind Energy Patterns 37 5.2 Capacity Improvement by Joint Sleep-Awake Scheduling and Power Control 41 5.3 Interference Effects on Cell Capacity 42 Chapter 6 Conclusions and Future Works 45 6.1 Conclusions 45 6.2 Future Works 46 REFERENCE 47 | |
| dc.language.iso | en | |
| dc.subject | 節能基地台 | zh_TW |
| dc.subject | 動態睡醒機制排程 | zh_TW |
| dc.subject | 異質性蜂巢式網路 | zh_TW |
| dc.subject | 資源分配 | zh_TW |
| dc.subject | 綠能蜂巢式網路 | zh_TW |
| dc.subject | Power-saving BS | en |
| dc.subject | HetNets | en |
| dc.subject | green cellular networks | en |
| dc.subject | resource allocation | en |
| dc.subject | dynamic sleep-awake scheduling | en |
| dc.title | 異質性蜂巢式網路下再生能源小型基地台之容量最大化研究 | zh_TW |
| dc.title | Capacity Maximization of Energy-Harvesting Small Cells in Heterogeneous Cellular Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗男(Tsungnan Lin),周承復(Cheng-Fu Chou),楊得年(De-Nian Yang) | |
| dc.subject.keyword | 節能基地台,動態睡醒機制排程,資源分配,綠能蜂巢式網路,異質性蜂巢式網路, | zh_TW |
| dc.subject.keyword | Power-saving BS,dynamic sleep-awake scheduling,resource allocation,green cellular networks,HetNets, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
