請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57530完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
| dc.contributor.author | Wan-Ying Lin | en |
| dc.contributor.author | 林宛瑩 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:50:09Z | - |
| dc.date.available | 2019-08-14 | |
| dc.date.copyright | 2014-08-14 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-23 | |
| dc.identifier.citation | Abdus-Saboor, I., Mancuso, V.P., Murray, J.I., Palozola, K., Norris, C., Hall, D.H., Howell, K., Huang, K., and Sundaram, M.V. (2011). Notch and Ras promote sequential steps of excretory tube development in C. elegans. Development 138, 3545-3555.
Allan, D. (2000). Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. Biochem J 345, 603-610. Andrew Fire, S.X., Mary K. Montgomery, Steven A. Kostas, Samuel E. Driver & Craig C. Mello (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 39, 806-811. Anthony, M.L. (1999). Inhibition of Phosphatidylcholine Biosynthesis following Induction of Apoptosis in HL-60 Cells. Journal of Biological Chemistry 274, 19686-19692. Breckenridge, D.G., Kang, B.H., Kokel, D., Mitani, S., Staehelin, L.A., and Xue, D. (2008). Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Molecular cell 31, 586-597. Buechner, M. (2002). Tubes and the single C.elegans excretory cell. TRENDS in cell biology 12, 479-484. Chen, Y.Z., Mapes, J., Lee, E.S., Skeen-Gaar, R.R., and Xue, D. (2013). Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nature communications 4, 2726. Chien, S.C., Brinkmann, E.M., Teuliere, J., and Garriga, G. (2013). Caenorhabditis elegans PIG-1/MELK acts in a conserved PAR-4/LKB1 polarity pathway to promote asymmetric neuroblast divisions. Genetics 193, 897-909. Cordes, S., Frank, C.A., and Garriga, G. (2006). The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development 133, 2747-2756. Craig C. Mello , J.M.K., and Ambros, D.S.a.V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO Journal 10, 3959 - 3970. Crawford, E.D., and Wells, J.A. (2011). Caspase substrates and cellular remodeling. Annual review of biochemistry 80, 1055-1087. Denning, D.P., Hatch, V., and Horvitz, H.R. (2012). Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Nature 488, 226-230. Evans, H.I.G.a.D.R. (1996). Funtion of the Major Synthetase Subdomains of Carbamyl-phosphate Synthetase. The Journal Of Biological Chemistry 271, 13762-13769. Franks, D.M., Izumikawa, T., Kitagawa, H., Sugahara, K., and Okkema, P.G. (2006). C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Developmental biology 296, 409-420. Graves, M.H.a.L.M. (2002). De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways. CMLS, Cell Mol Life Sci 60, 321-336. Huang, M.a.G., L. M. (2003). De novo synthesis of pyrimidine nucleaotides; emerging interfaces with signal transduction pathways. Cellular and Molecular Life Sciences 60, 321-336. Iwahana, H., Fujimura, M., Ii, S., Kondo, M., Moritani, M., Takahashi, Y.,Yamaoka, T., Yoshimoto, K. and Itakura, M. (1996). Molecular Cloning of a Synthetase-Aspartate Transcarbamoylase- Dihydroorotase in de Novo Pyrimidine Synthesis. Biochemical and Biophysical Research Communications 219, 249-225. Lettre, G., and Hengartner, M.O. (2006). Developmental apoptosis in C. elegans: a complex CEDnario. Nature reviews Molecular cell biology 7, 97-108. Liu, Q.a.P., Z. (2010). 'Dicer's Cut and Switch'. Science 328, 314-315. Michael O. Hengartner, R.E.E.H.R.H. (1992). Caenohabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-499. Min Huaung, P.K., Matthew Collins, Yanhong Wang, TimothyY A. Haystead, and Lee M. Graves (2002). Caspase-Dependent Cleavage of Carbamoyl Phosphate Synthetase II during Apoptosis. Molecular Pharmacology 3, 569-577. Myers, T.R., and Greenwald, I. (2005). lin-35 Rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans. Developmental cell 8, 117-123. Nakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S., and Xue, D. (2010). Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328, 327-334. Richmond, A.L., Kabi, A., Homer, C.R., Marina-Garcia, N., Nickerson, K.P., Nesvizhskii, A.I., Sreekumar, A., Chinnaiyan, A.M., Nunez, G., and McDonald, C. (2012). The nucleotide synthesis enzyme CAD inhibits NOD2 antibacterial function in human intestinal epithelial cells. Gastroenterology 142, 1483-1492 e1486. Shai Shaham, P.W.R., Brian Davies2 and H. Robert Horvitz (1999). Mutational Analysis of the Caenorhabditis elegans Cell-Death Gene ced-3. Genetics 153, 1655–1671. Weber, M.A.R.a.G. (1985). Increased Carbamoyl-phosphate Synthetase II Concentration in Rat Hepatomas: Immunological Evidence. Cancer Res 45, 4412-4415. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57530 | - |
| dc.description.abstract | 計畫性細胞死亡(Programmed cell death)是演化上高度保留的一個機制,在動物生長發育的過程中扮演了十分重要的角色。線蟲已被證明是用來研究計畫性細胞死亡很好的模型。過去研究已知線蟲計畫性細胞死亡中的執行步驟主要由egl-1、ced-9、ced-4及ced-3四個基因所調控,其中ced-3此蛋白質分解脢的活化更是直接造成細胞的死亡。然而,究竟ced-3是透過分解、截切哪些蛋白質來促使細胞凋亡至今仍不清楚。為了找出參與在計畫性細胞死亡的其他基因,我們利用遺傳篩選的方式篩選,並篩選出tp12突變株。tp12在胚胎發育過程中細胞屍體數相較於野生株少。tp12突變於基因pyr-1,pyr-1與人類的CAD (carbamoyl phosphate synthetase、aspartate transcarbamylase與dihydroorotase)是同源基因。CAD是一個三官能的蛋白質,含有3種酵素活性並參與合成嘧啶的速率決定步驟。在顯微鏡拍攝觀察突變株胚胎發育過程的實驗中,我們發現pyr-1(tp12)突變株在一個敏感的突變條件下(grp-1 mutant background),有些特定細胞會不正常存活。這些不正常存活的細胞分別是,分泌細胞(excretory cell)的姨細胞(aunt cell)及表皮細胞(hyp8/9 cells)的姨細胞。我們也發現,pyr-1(tp12)突變株在grp-1這個敏感的突變條件下有多餘的分泌細胞和表皮細胞。這些結果暗示著不正常存活的姨細胞繼續分裂並分化成分泌細胞和表皮細胞,顯示pyr-1參與在分泌細胞及表皮細胞的姨細胞之凋亡中。另外,過去研究指出,老鼠的CAD是caspase的受質,於是我們好奇PYR-1是否也為CED-3的受質。在CED-3的截切實驗中,我們證實PYR-1能被CED-3截切,為CED-3的受質,並且發現CED-3的切位坐落於PYR-1的DHO 區域(domain)。透過CASVM切位預測軟體,我們找出兩個可能的CED-3切位:DLPD及EYID。綜合所有結果,我們假設PYR-1在被CED-3截切後產生能夠促進細胞死亡的功能,並且只影響到特定細胞如分泌細胞和表皮細胞之姨細胞的死亡。 | zh_TW |
| dc.description.abstract | Programmed cell death (PCD) is a conserved cellular process, which is important for animal development. C.elegans is one of the most commonly-used model organisms in the studies of PCD. Extensive studies in C.elegans show that four key genes, egl-1, ced-9, ced-4 and ced-3 control the execution of PCD, and the activation of caspase CED-3 leads to the demise of the cell. However, only few substrates of CED-3 have been identified thus far. To identify more genes that participate in PCD, we undertook a genetic screen and isolated the tp12 mutation. The tp12 mutant has reduced numbers of embryonic cell corpses as compared to those of wildtype. A genetic complementation test reveals that tp12 is an allele of pyr-1. PYR-1 is a homolog of the mammalian CAD, which stands for carbamoyl phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, and is known to control the rate-limiting step during pyrimidine biosynthesis. Using 4-dimentional microscopy analysis, we found that the pyr-1(tp12) mutant, in a sensitized background, shows frequent loss of specific cell corpses, the aunt cells of the hyp8/9 hypodermal cells and the excretory cell. Consistently, an extra hyp8/9 nucleus and excretory cell are observed in the pyr-1(tp12) mutant in a sensitized background. These results suggest that pyr-1 is involved in the death of the aunt cells of the hyp8/9 cells and the excretory cell. Furthermore, previous research showed that the PYR-1 homolog mammalian protein, CAD is a substrate of caspase 3, therefore we wonder whether PYR-1 is also a CED-3 substrate. In a CED-3 cleavage assay, we found that PYR-1 can be cleaved by CED-3, which indicated that PYR-1 is a CED-3 substrate. Moreover, the cleavage sites were shown to locate in the DHO domain of PYR-1. By using the CASVM(Server for SVM Prediction of Caspase Substrates Cleavage Sites), two potential CED-3 cleavage sites: DLPD and EYID were found. Together, we hypothesize that PYR-1 gains a proapoptotic function after being cleaved by CED-3, and functions in the programmed cell death of specific cells such as the aunt cell of excretory cell and hyp8/9 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:50:09Z (GMT). No. of bitstreams: 1 ntu-103-R01b43003-1.pdf: 2550355 bytes, checksum: 527ed2f3def4c6227a3c5ee43ef71d48 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Table of content v Introduction 1 Methods and Materials 7 Strains and culture conditions 7 Plasmid Construction 7 Transgenic animals 10 Cell corpses analysis and 4D microscopy 10 grp-1(RNAi) analysis 11 Prediction of potential CED-3 cleavage sites 11 Statistical analysis 11 Results 13 The tail defect phenotype of the pyr-1(tp12) mutant is similar to that of the ced-3(n2923) mutant in the grp-1 background 13 pyr-1 mutants have less cell corpses compared to wild type 13 Uracil supplement could not rescue the phenotype of the pyr-1(tp12) mutant 14 The corpses of ABplpappap, ABprpppapp and ABplpppapp are missing in the pyr-1(tp12);grp-1 mutant 16 ABprpppapp and ABplpppapp, survive and divide into extra hyp8/9 cell and phasmid sheath cell in the tail of the pyr-1(tp12); grp-1 mutant 17 ABplpappap, survive and divide into an extra excretory cell in the pyr-1(tp12); grp-1(RNAi) mutant 19 Although pig-1 have function similar to grp-1, the relation between pig-1 and pyr-1 isn’t similar to the relation between grp-1 and pyr-1 20 pyr-1 is expressed in ABplpappap, ABprpppapp and ABplpppapp 21 pyr-1 mutants seldom have shed cells 22 PYR-1can be cleaved by CED-3 in vitro 23 Discussion 26 pyr-1 affects PCD independent of its enzymatic activity 26 pyr-1 only functions in specific cells 27 pyr-1 has grp-1-enhanced killing function and self-dependent killing function 28 grp-1 has a new function that enhances the killing function of pyr-1 28 The role of PYR-1 in PCD is different from that of the mammalian CAD 29 PYR-1 might interact with CED-3 or CED-4 30 The mutation sites of pyr-1(tp12) and pyr-1(cu8) are important for the proapoptotic function of PYR-1 30 Future work 31 References 33 Figures 38 Figure 1. The schemes of the programmed cell death process in C.elegans. 38 Figure 2. Extra cells formed in the grp-1;ced-3 double mutant. 39 Figure 3. Exogenous uracil failed to rescue the tail defect of pyr-1;grp-1 mutants. 40 Figure 4. pyr-1(tp12) mutants have decreased cell corpses numbers. 42 Figure 5. PYR-1 is a pyrimidine synthetase that contains five domains, and is required in the pyrimidine biosynthesis pathway in C.elegans. 43 Figure 6. Uracil supplement failed to rescue the decrease in cell corpses of the pyr-1 mutants. 45 Figure 7. The cell corpses of ABplpappap, ABprpppapp and ABplpppapp disappeared in the pyr-1(tp12); grp-1 mutant. 46 Figure 8. The pyr-1(tp12); grp-1 mutant has extra hyp8/9 cells. 48 Figure 9. The pyr-1(tp12);grp-1 mutant has extra phasmid sheath cells. 50 Figure 10. The pyr-1(tp12); grp-1 double mutant has extra lin-3-positive- excretory-like cell 51 Figure 11. The expression pattern of PYR-1. 52 Figure 12. The CED-3 cleavage sites are mainly located in the DHO domain of PYR-1. 53 Figure 13. The predicted CED-3 cleavage sites in PYR-1. 54 Figure 14. Model for the proapoptotic fragment formation of PYR-1. 55 Tables 56 Table 1. pyr-1 mutants have less cell corpses. 56 Table2. grp-1 mutation enhance the survival rate of specific cells in the pyr-1(tp12) mutant 57 Table 3. Extra hyp8/9 cells were seen in the pyr-1(tp12); grp-1 mutant 58 Table 4. Extra excretory cells were seen in the pyr-1;syIs107 grp-1(RNAi) mutant embryo 59 Table 5. The pyr-1(tp12) mutant contains severe large cysts 60 Table 6. The potential cleavage sites in DHO domain and the predicted fragment sizes. 61 Supplementary figures 62 Figure S1. The lethality of pyr-1(cu8) can be rescued by exogeneous uracil supplement. 62 Figure S2. The shed cells of the pyr-1 mutants. 63 Figure S3. The highly conserved potential caspase cutting site, VALD, isn’t a cleavage site in PYR-1. 64 Supplementary Tables 65 Table S1. Mutation in the PCD execution or timing control genes result in a tail defect in the grp-1 sensitized background 65 Table S2. The reduced cell corpses of pyr-1(tp12) was rescued by the transgene Ppyr-1::pyr-1::gfp 66 Table S3. grp-1 mutation enhanced the phenotype of pyr-1(tp12) single mutants 67 | |
| dc.language.iso | en | |
| dc.subject | 計畫性細胞死亡 | zh_TW |
| dc.subject | 線蟲 | zh_TW |
| dc.subject | 嘧啶合成? | zh_TW |
| dc.subject | C.elegans | en |
| dc.subject | pyrimidine synthetase | en |
| dc.subject | programmed cell death | en |
| dc.title | 線蟲嘧啶合成酶在計畫性細胞死亡中扮演的角色 | zh_TW |
| dc.title | C.elegans pyrimidine synthetase functions in specific programmed cell death | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊宏,吳瑞菁 | |
| dc.subject.keyword | 線蟲,嘧啶合成?,計畫性細胞死亡, | zh_TW |
| dc.subject.keyword | C.elegans,pyrimidine synthetase,programmed cell death, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
