請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57525完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李君男(Chun-Nan Lee) | |
| dc.contributor.author | Shu-Chen Hsu | en |
| dc.contributor.author | 許書禎 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:49:55Z | - |
| dc.date.available | 2016-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-24 | |
| dc.identifier.citation | 1. H. Robert Horton, L.A.M., K. Gray Scrimgeour, Marc D. Perry and J. David Rawn, Principles of Biochemistry. 2006: Pearson Prentice Hall.
2. Toth, P.P., The 'good cholesterol' - High-density lipoprotein. Circulation, 2005. 111(5): p. E89-E91. 3. Griffin, B.A., D.J. Freeman, G.W. Tait, J. Thomson, M.J. Caslake, C.J. Packard, and J. Shepherd, Role of Plasma Triglyceride in the Regulation of Plasma Low-Density-Lipoprotein (Ldl) Subfractions - Relative Contribution of Small, Dense Ldl to Coronary Heart-Disease Risk. Atherosclerosis, 1994. 106(2): p. 241-253. 4. Karp, G., Cell Biology, 6th Edition. 2010: Wiley. 289-353. 5. Sinensky, M., Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A, 1974. 71(2): p. 522-5. 6. Pike, L.J., Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res, 2006. 47(7): p. 1597-8. 7. Pike, L.J., Lipid rafts: bringing order to chaos. J Lipid Res, 2003. 44(4): p. 655-67. 8. Hooper, N.M., Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol, 1999. 16(2): p. 145-56. 9. Rietveld, A., S. Neutz, K. Simons, and S. Eaton, Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem, 1999. 274(17): p. 12049-54. 10. Brown, D.A. and E. London, Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol, 1998. 14: p. 111-36. 11. Parton, R.G., Caveolae and caveolins. Curr Opin Cell Biol, 1996. 8(4): p. 542-8. 12. Schnitzer, J.E., P. Oh, E. Pinney, and J. Allard, Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol, 1994. 127(5): p. 1217-32. 13. Campanero-Rhodes, M.A., A. Smith, W. Chai, S. Sonnino, L. Mauri, R.A. Childs, Y. Zhang, H. Ewers, A. Helenius, A. Imberty, and T. Feizi, N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol, 2007. 81(23): p. 12846-58. 14. Pietiainen, V.M., V. Marjomaki, J. Heino, and T. Hyypia, Viral entry, lipid rafts and caveosomes. Ann Med, 2005. 37(6): p. 394-403. 15. Rajendran, L. and K. Simons, Lipid rafts and membrane dynamics. J Cell Sci, 2005. 118(Pt 6): p. 1099-102. 16. Rawat, S.S., M. Viard, S.A. Gallo, A. Rein, R. Blumenthal, and A. Puri, Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol Membr Biol, 2003. 20(3): p. 243-54. 17. 衛生福利部統計處. Available from: http://www.mohw.gov.tw/. 18. Cho, H.J., P. Shashkin, C.A. Gleissner, D. Dunson, N. Jain, J.K. Lee, Y. Miller, and K. Ley, Induction of dendritic cell-like phenotype in macrophages during foam cell formation. Physiological Genomics, 2007. 29(2): p. 149-160. 19. Masters, C.L., G. Simms, N.A. Weinman, G. Multhaup, B.L. McDonald, and K. Beyreuther, Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 1985. 82(12): p. 4245-9. 20. Burns, M.P., W.J. Noble, V. Olm, K. Gaynor, E. Casey, J. LaFrancois, L. Wang, and K. Duff, Co-localization of cholesterol, apolipoprotein E and fibrillar Abeta in amyloid plaques. Brain Res Mol Brain Res, 2003. 110(1): p. 119-25. 21. Hayashi, H., N. Kimura, H. Yamaguchi, K. Hasegawa, T. Yokoseki, M. Shibata, N. Yamamoto, M. Michikawa, Y. Yoshikawa, K. Terao, K. Matsuzaki, C.A. Lemere, D.J. Selkoe, H. Naiki, and K. Yanagisawa, A seed for Alzheimer amyloid in the brain. J Neurosci, 2004. 24(20): p. 4894-902. 22. Bieschke, J., Q. Zhang, E.T. Powers, R.A. Lerner, and J.W. Kelly, Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry, 2005. 44(13): p. 4977-83. 23. Kanwal, F., T. Hoang, J.R. Kramer, S.M. Asch, M.B. Goetz, A. Zeringue, P. Richardson, and H.B. El-Serag, Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection. Gastroenterology, 2011. 140(4): p. 1182-1188 e1. 24. Diaz, O., F. Delers, M. Maynard, S. Demignot, F. Zoulim, J. Chambaz, C. Trepo, V. Lotteau, and P. Andre, Preferential association of Hepatitis C virus with apolipoprotein B48-containing lipoproteins. J Gen Virol, 2006. 87(Pt 10): p. 2983-91. 25. Felmlee, D.J., D.A. Sheridan, S.H. Bridge, S.U. Nielsen, R.W. Milne, C.J. Packard, M.J. Caslake, J. McLauchlan, G.L. Toms, R.D. Neely, and M.F. Bassendine, Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles. Gastroenterology, 2010. 139(5): p. 1774-83, 1783 e1-6. 26. Felmlee, D.J., M.L. Hafirassou, M. Lefevre, T.F. Baumert, and C. Schuster, Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses, 2013. 5(5): p. 1292-324. 27. Hall, C.B., Respiratory syncytial virus and parainfluenza virus. N Engl J Med, 2001. 344(25): p. 1917-28. 28. Rodal, S.K., G. Skretting, O. Garred, F. Vilhardt, B. van Deurs, and K. Sandvig, Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Molecular Biology of the Cell, 1999. 10(4): p. 961-974. 29. Chang, T.H., J. Segovia, A. Sabbah, V. Mgbemena, and S. Bose, Cholesterol-rich lipid rafts are required for release of infectious human respiratory syncytial virus particles. Virology, 2012. 422(2): p. 205-13. 30. Li, H. and V. Papadopoulos, Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus patterns. Endocrinology, 1998. 139(12): p. 4991-4997. 31. Li, H., Z.X. Yao, B. Degenhardt, G. Teper, and V. Papadopoulos, Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(3): p. 1267-1272. 32. Zhang, J., A. Pekosz, and R.A. Lamb, Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol, 2000. 74(10): p. 4634-44. 33. Kalvodova, L., J.L. Sampaio, S. Cordo, C.S. Ejsing, A. Shevchenko, and K. Simons, The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J Virol, 2009. 83(16): p. 7996-8003. 34. Palese P, S.M., ed. Orthomyxoviridae: the viruses and their replication. Fields virology. Vol. 5th ed, vol 2. p1647–1689. 35. Sun, X. and G.R. Whittaker, Role for influenza virus envelope cholesterol in virus entry and infection. J Virol, 2003. 77(23): p. 12543-51. 36. Huang, H., Y. Li, T. Sadaoka, H. Tang, T. Yamamoto, K. Yamanishi, and Y. Mori, Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol, 2006. 87(Pt 2): p. 277-85. 37. Schroeder, C., Cholesterol-binding viral proteins in virus entry and morphogenesis. Subcell Biochem, 2010. 51: p. 77-108. 38. Webster, R.G., W.J. Bean, O.T. Gorman, T.M. Chambers, and Y. Kawaoka, Evolution and ecology of influenza A viruses. Microbiol Rev, 1992. 56(1): p. 152-79. 39. Jagger, B.W., H.M. Wise, J.C. Kash, K.A. Walters, N.M. Wills, Y.L. Xiao, R.L. Dunfee, L.M. Schwartzman, A. Ozinsky, G.L. Bell, R.M. Dalton, A. Lo, S. Efstathiou, J.F. Atkins, A.E. Firth, J.K. Taubenberger, and P. Digard, An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science, 2012. 337(6091): p. 199-204. 40. Fujiyoshi, Y., N.P. Kume, K. Sakata, and S.B. Sato, Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J, 1994. 13(2): p. 318-26. 41. Chu, C.M., I.M. Dawson, and W.J. Elford, Filamentous forms associated with newly isolated influenza virus. Lancet, 1949. 1(6554): p. 602. 42. Kilbourne, E.D. and J.S. Murphy, Genetic studies of influenza viruses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J Exp Med, 1960. 111: p. 387-406. 43. Apostolov, K. and T.H. Flewett, Further observations on the structure of influenza viruses. J Gen Microbiol, 1968. 53(1): p. Suppl:vii. 44. Lamb, R.A. and P.W. Choppin, The gene structure and replication of influenza virus. Annu Rev Biochem, 1983. 52: p. 467-506. 45. Nayak, D.P., E.K. Hui, and S. Barman, Assembly and budding of influenza virus. Virus Res, 2004. 106(2): p. 147-65. 46. Huang, Q., R.P. Sivaramakrishna, K. Ludwig, T. Korte, C. Bottcher, and A. Herrmann, Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim Biophys Acta, 2003. 1614(1): p. 3-13. 47. Schroeder, C., H. Heider, E. Moncke-Buchner, and T.I. Lin, The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J, 2005. 34(1): p. 52-66. 48. Tong, S., Y. Li, P. Rivailler, C. Conrardy, D.A. Castillo, L.M. Chen, S. Recuenco, J.A. Ellison, C.T. Davis, I.A. York, A.S. Turmelle, D. Moran, S. Rogers, M. Shi, Y. Tao, M.R. Weil, K. Tang, L.A. Rowe, S. Sammons, X. Xu, M. Frace, K.A. Lindblade, N.J. Cox, L.J. Anderson, C.E. Rupprecht, and R.O. Donis, A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4269-74. 49. Tong, S., X. Zhu, Y. Li, M. Shi, J. Zhang, M. Bourgeois, H. Yang, X. Chen, S. Recuenco, J. Gomez, L.M. Chen, A. Johnson, Y. Tao, C. Dreyfus, W. Yu, R. McBride, P.J. Carney, A.T. Gilbert, J. Chang, Z. Guo, C.T. Davis, J.C. Paulson, J. Stevens, C.E. Rupprecht, E.C. Holmes, I.A. Wilson, and R.O. Donis, New world bats harbor diverse influenza A viruses. PLoS Pathog, 2013. 9(10): p. e1003657. 50. Horisberger, M.A., The large P proteins of influenza A viruses are composed of one acidic and two basic polypeptides. Virology, 1980. 107(1): p. 302-5. 51. Honda, A., J. Mukaigawa, A. Yokoiyama, A. Kato, S. Ueda, K. Nagata, M. Krystal, D.P. Nayak, and A. Ishihama, Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem, 1990. 107(4): p. 624-8. 52. Detjen, B.M., C. St Angelo, M.G. Katze, and R.M. Krug, The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. J Virol, 1987. 61(1): p. 16-22. 53. Varki A, C.R., Esko JD, et al., Essentials of Glycobiology, in Chapter 14: Sialic Acids. 2009, Cold Spring Harbor Laboratory Press. 54. Ito, T., Y. Suzuki, A. Takada, A. Kawamoto, K. Otsuki, H. Masuda, M. Yamada, T. Suzuki, H. Kida, and Y. Kawaoka, Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol, 1997. 71(4): p. 3357-62. 55. Ito, T., Y. Suzuki, T. Suzuki, A. Takada, T. Horimoto, K. Wells, H. Kida, K. Otsuki, M. Kiso, H. Ishida, and Y. Kawaoka, Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol, 2000. 74(19): p. 9300-5. 56. Shinya, K., M. Ebina, S. Yamada, M. Ono, N. Kasai, and Y. Kawaoka, Avian flu: influenza virus receptors in the human airway. Nature, 2006. 440(7083): p. 435-6. 57. Ibricevic, A., A. Pekosz, M.J. Walter, C. Newby, J.T. Battaile, E.G. Brown, M.J. Holtzman, and S.L. Brody, Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol, 2006. 80(15): p. 7469-80. 58. Lakadamyali, M., M.J. Rust, and X. Zhuang, Endocytosis of influenza viruses. Microbes Infect, 2004. 6(10): p. 929-36. 59. Patterson, S., J.S. Oxford, and R.R. Dourmashkin, Studies on the mechanism of influenza virus entry into cells. J Gen Virol, 1979. 43(1): p. 223-9. 60. Matlin, K.S., H. Reggio, A. Helenius, and K. Simons, Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol, 1981. 91(3 Pt 1): p. 601-13. 61. Rust, M.J., M. Lakadamyali, F. Zhang, and X. Zhuang, Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol, 2004. 11(6): p. 567-73. 62. Mukaigawa, J. and D.P. Nayak, Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol, 1991. 65(1): p. 245-53. 63. Nath, S.T. and D.P. Nayak, Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol, 1990. 10(8): p. 4139-45. 64. Fodor, E. and M. Smith, The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol, 2004. 78(17): p. 9144-53. 65. Craig E. Cameron , M.G., and Kevin D. Raney, ed. Viral Genome Replication. 2009, Springer. 163- 180. 66. Scheiffele, P., A. Rietveld, T. Wilk, and K. Simons, Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem, 1999. 274(4): p. 2038-44. 67. Martin, P.M. and E. Martin-Granel, 2,500-year evolution of the term epidemic. Emerg Infect Dis, 2006. 12(6): p. 976-80. 68. Taubenberger, J.K. and D.M. Morens, 1918 Influenza: the mother of all pandemics. Emerg Infect Dis, 2006. 12(1): p. 15-22. 69. Potter, C.W., A history of influenza. J Appl Microbiol, 2001. 91(4): p. 572-9. 70. Prevention, C. 2009 H1N1 international situation update. 2010. 71. S. J. Flint, V.R.R., L. W. Enquist, and A. M. Skalka, Principles of Virology. Vol. 2. 2009: ASM PRESS. 52- 82. 72. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature, 2007. 449(7164): p. 819-26. 73. Akira, S., K. Takeda, and T. Kaisho, Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2001. 2(8): p. 675-80. 74. Boehme, K.W. and T. Compton, Innate sensing of viruses by toll-like receptors. J Virol, 2004. 78(15): p. 7867-73. 75. Krieg, A.M., The role of CpG motifs in innate immunity. Curr Opin Immunol, 2000. 12(1): p. 35-43. 76. Sioud, M., Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med, 2006. 12(4): p. 167-76. 77. Mogensen, T.H. and S.R. Paludan, Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev, 2001. 65(1): p. 131-50. 78. Sen, G.C., Viruses and interferons. Annu Rev Microbiol, 2001. 55: p. 255-81. 79. Kisseleva, T., S. Bhattacharya, J. Braunstein, and C.W. Schindler, Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002. 285(1-2): p. 1-24. 80. Silverman, R.H., Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol, 2007. 81(23): p. 12720-9. 81. Pearlman, E., A.H. Jiwa, N.C. Engleberg, and B.I. Eisenstein, Growth of Legionella pneumophila in a human macrophage-like (U937) cell line. Microb Pathog, 1988. 5(2): p. 87-95. 82. Sintiprungrat, K., N. Singhto, S. Sinchaikul, S.T. Chen, and V. Thongboonkerd, Alterations in cellular proteome and secretome upon differentiation from monocyte to macrophage by treatment with phorbol myristate acetate: insights into biological processes. J Proteomics, 2010. 73(3): p. 602-18. 83. Brown, D.A. and J.K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 1992. 68(3): p. 533-44. 84. Elhanati, S., Y. Kanfi, A. Varvak, A. Roichman, I. Carmel-Gross, S. Barth, G. Gibor, and H.Y. Cohen, Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep, 2013. 4(5): p. 905-12. 85. Hao-Wei Wang, C.-L.K., Role of cholesterol in cell susceptibility to 2009 pandemic influenza A virus infection. 2012. 86. Beaulieu, A., E. Gravel, A. Cloutier, I. Marois, E. Colombo, A. Desilets, C. Verreault, R. Leduc, E. Marsault, and M.V. Richter, Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium. J Virol, 2013. 87(8): p. 4237-51. 87. Ahmad, S., A. Ahmad, K.B. Schneider, and C.W. White, Cholesterol interferes with the MTT assay in human epithelial-like (A549) and endothelial (HLMVE and HCAE) cells. Int J Toxicol, 2006. 25(1): p. 17-23. 88. Altmann, S.W., H.R. Davis, L.J. Zhu, X.R. Yao, L.M. Hoos, G. Tetzloff, S.P.N. Iyer, M. Maguire, A. Golovko, M. Zeng, L.Q. Wang, N. Murgolo, and M.P. Graziano, Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science, 2004. 303(5661): p. 1201-1204. 89. Yu, L.Q., S. Bharadwaj, J.M. Brown, Y.Y. Ma, W. Du, M.A. Davis, P. Michaely, P.S. Liu, M.C. Willingham, and L.L. Rudel, Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. Journal of Biological Chemistry, 2006. 281(10): p. 6616-6624. 90. Zhang, J.H., L. Ge, W. Qi, L. Zhang, H.H. Miao, B.L. Li, M. Yang, and B.L. Song, The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem, 2011. 286(28): p. 25088-97. 91. Davies, J.P., C. Scott, K. Oishi, A. Liapis, and Y.A. Ioannou, Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. Journal of Biological Chemistry, 2005. 280(13): p. 12710-12720. 92. Barman, S. and D.P. Nayak, Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol, 2007. 81(22): p. 12169-78. 93. Leser, G.P. and R.A. Lamb, Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology, 2005. 342(2): p. 215-27. 94. Sieczkarski, S.B. and G.R. Whittaker, Characterization of the host cell entry of filamentous influenza virus. Arch Virol, 2005. 150(9): p. 1783-96. 95. Domanska, M.K., D. Wrona, and P.M. Kasson, Multiphasic effects of cholesterol on influenza fusion kinetics reflect multiple mechanistic roles. Biophys J, 2013. 105(6): p. 1383-7. 96. Lu, Y.E. and M. Kielian, Semliki Forest virus budding: Assay, mechanisms, and cholesterol requirement. Journal of Virology, 2000. 74(17): p. 7708-7719. 97. Nguyen, D.H. and J.E.K. Hildreth, Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. Journal of Virology, 2000. 74(7): p. 3264-3272. 98. Henkel, A.S., K.A. Anderson, A.M. Dewey, M.H. Kavesh, and R.M. Green, A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice. Journal of Lipid Research, 2011. 52(2): p. 289-298. 99. Tomofuji, T., T. Azuma, H. Kusano, T. Sanbe, D. Ekuni, N. Tamaki, T. Yamamoto, and T. Watanabe, Oxidative damage of periodontal tissue in the rat periodontitis model: Effects of a high-cholesterol diet. Febs Letters, 2006. 580(15): p. 3601-3604. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57525 | - |
| dc.description.abstract | 膽固醇為生物體中的重要成分,其功能包含了物質的運輸、膽鹽的形成、荷爾蒙的前驅物甚至是組成細胞膜的重要成分,並與許多慢性疾病都有相關性。膽固醇亦為脂筏的重要成分之一,其與許多病毒對於宿主細胞之吸附、進入與生長佔有重要的角色。流感病毒是一造成呼吸道感染疾病之病毒,屬於正黏液病毒屬,具有8段單股、負向RNA片段。在人類歷史中曾有多次的大流行並造成數百萬至數千萬人死亡且伴隨著巨大的經濟損失。於2009年流行之H1N1新型流感病毒亦一度造成全球大恐慌。本研究利用人類氣管上皮細胞(Calu-3)以及單核球細胞株U937所誘導之類巨噬細胞,探討高濃度膽固醇對於細胞或流感病毒之影響,以了解流感病毒與宿主細胞間之交互作用。
首先觀察膽固醇對於Calu-3與U937細胞之細胞毒性,從結果得知於0.04 mM與0.08 mM之膽固醇濃度下兩種細胞皆有80 %以上的存活率,而U937的生長曲線於高膽固醇下亦不受影響。此外,培養於高膽固醇之Calu-3細胞的形態亦沒有明顯改變。而實驗發現膽固醇會影響MTT試驗之判讀,因此本研究改以錐蟲藍排除試驗測試膽固醇之細胞毒性。於高膽固醇培養之Calu-3細胞利用蔗糖梯度離心分離細胞膜,觀察到Calu-3細胞膜中之膽固醇有顯著的增加,顯示本實驗所添加之膽固醇確實能夠提高細胞膜中之膽固醇濃度。另外,利用螢光染色的方式亦觀察到alpha 2, 3-與alpha 2, 6-鍵結之唾液酸表現量有增多的現象;但是膽固醇所造成細胞膜上之唾液酸增加之機制仍有待未來更進一步的探討。而高膽固醇細胞感染流感病毒後,表現於細胞膜上之流感病毒HA蛋白質亦有增多的現象。此外,也觀察到於高膽固醇培養出的病毒(高膽固醇病毒)於血球凝集試驗中有較強之HA結合能力;為確認實驗中兩組比較之病毒液含有等量之病毒,同時利用real-time qPCR定量病毒核酸及溶斑試驗定量具感染力的病毒,發現兩者測定之病毒量是無差異的。因此推論於高膽固醇病毒表現之HA蛋白質較對照組流感病毒(正常病毒)為多。而流感病毒於0.04 mM與0.08 mM的膽固醇濃度下在Calu-3細胞中之生長曲線並不受影響,但高膽固醇病毒相較於正常病毒在感染Calu-3細胞後有較緩慢的複製,由前人的研究結果推測,高膽固醇可能會影響病毒之苞出。在病毒密度測定的實驗中,亦發現高膽固醇病毒之密度較低,因此推測膽固醇確實會影響流感病毒之病毒顆粒。在流感病毒對於宿主細胞吸附與進入能力的試驗中,觀察到高膽固醇病毒有較強之吸附能力;因此,推測高膽固醇病毒所表現之HA蛋白質較多,以致吸附能力增強。不過,膽固醇對於流感病毒進入宿主細胞之能力並沒有觀察到顯著的影響;而先前研究指出,膽固醇與流感病毒與細胞之融合有相關性,但多於極高濃度膽固醇實驗環境下探討。所以推測因本實驗中所用之膽固醇濃度較前述研究低,而沒有觀察到病毒進入細胞之能力改變。過去研究指出膽固醇會增加細胞前發炎細胞激素的表現量,而本研究在高膽固醇細胞感染流感病毒後觀察到TNF-α、IL-6與IFN-β的mRNA表現量有減少的趨勢,此結果之意義仍有待未來更進一步的研究。 總括而論,本研究首次利用人類氣管上皮細胞並以較貼近生理濃度之膽固醇來探討膽固醇與流感病毒之關係,發現高膽固醇病毒之HA蛋白質表現量較多,且對宿主細胞之吸附能力顯著增加,但其生長能力較正常病毒緩慢而其病毒密度亦較正常病毒低。而細胞於高膽固醇環境下,細胞膜上所表現之唾液酸亦有增加的現象,且在感染流感病毒後,細胞膜上所表現之HA蛋白質亦有所增加。 | zh_TW |
| dc.description.abstract | Cholesterol, which involved in cellular transport, formation of bile salts, and hormone precursor, is one important component in the cell membrane and also associated with many chronic diseases such as cardiovascular disease, stroke, hypertension, and diabetes. In addition, cholesterol is also an important element of lipid rafts on cell membrane and play essential role in viral adsorption, entry, and replication. Influenza viruses belong to the family Orthomyxoviridae, the genome containing 8 segments of negative-sense single-stranded RNA, cause respiratory diseases. Influenza virus has caused many pandemics in human history and millions to tens of millions of deaths, accompanied by numerous economic losses. Recently, new pandemic H1N1 influenza virus also caused global panic in 2009. In this study, we intend to investigate the effect of cholesterol on the virus-host interaction in the human airway epithelial cell (Calu-3) and human monocyte U937 induced macrophage-like cell.
First, we observed the cytotoxicity of cholesterol in Calu-3 and U937 cells. For the Calu-3 cells, over 80% of cell viability was observed under 0.08 mM of cholesterol, and the replication curve of U937 cell was also unaffected. We also found there was no change in cell morphology of Calu-3 in high cholesterol. We noted that cholesterol affected the MTT assay and therefore we used the trypan blue exclusion assay to determine the cytotoxicity of cholesterol. We also separated the cell plasma membrane of high cholesterol treated cells by sucrose gradient ultracentrifugation, and found that the concentration of cholesterol on cell plasma membrane was significantly increased. In addition, we observed the expressions of alpha-2, 3 and -2, 6 sialic acid on cell surface were increased by immunofluorescence assay, but the mechanisms need further investigation. Increased viral HA protein on cell plasma membrane was also observed in this study. Infection with similar amount of PFU and RNA copies, cholesterol-enriched virus had higher HA activity than normal influenza virus as detected by HA assay, that suggested cholesterol-enriched virus had higher HA expression on the viral surface. In this study we also observed no difference in viral growth kinetics between cholesterol treated and untreated, but cholesterol-enriched virus replicated slower than normal virus in Calu-3 cell. Moreover, the density of cholesterol-enriched virus was lower than normal virus, suggesting that cholesterol may affect influenza virus virions. In the viral adsorption and entry assay, cholesterol-enriched virus has higher adsorption ability than normal virus, but no difference in viral entry ability was observed. In previous studies, cholesterol is associated with virus fusion in extremely high cholesterol concentration. However, relatively lower cholesterol concentration was used in this study, we found that cholesterol has no effects on viral entry ability. Furthermore, we also observed the lower expression of cytokines, such as IFN-β, TNF-α, and IL-6, in high cholesterol treated cell after influenza virus infection. Previous reports indicated that cholesterol may increase the expression of proinflammatory cytokines either in vitro or in vivo. Therefore, the mechanism of lower expression of proinflammatory cytokines needs futher investigation. In conclusion, compared with normal influenza virus, more viral HA protein expression on the viral surface and higher adsorption ability, but has slower growth kinetics and lower viral density, were observed in cholesterol-enriched virus. On the other hand, high cholesterol treated cell expressed more sialic acid on cell surface, and more HA protein on the cell plasma membrane when infected with influenza virus. This is the fist investigation of the effect of cholesterol on virus-host interaction in Calu-3 cell under the condition of reasonable cholesterol concentration, and our results may provide alternative treatment strategies of influenza virus infection in patients with hypercholesterolemia in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:49:55Z (GMT). No. of bitstreams: 1 ntu-103-R01424021-1.pdf: 4748239 bytes, checksum: f40ad1d55e04711032f2d8fd22b35d64 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT IV 目錄 VII 圖目錄 X 表目錄 XI 第一章 緒論 1 1-1膽固醇簡介與生成 1 1-2膽固醇與細胞膜 2 1-3膽固醇與疾病 4 1-4膽固醇與病毒 5 1-5流行性感冒病毒之簡介 6 1-6 A型流感病毒之感染與複製 7 1-7 A型流感病毒之流行病學歷史 9 1-8 病毒感染宿主細胞之免疫反應 9 第二章 研究目的與設計 12 第三章 材料與方法 13 3-1 細胞培養 13 3-2 病毒培養 13 3-3 細胞毒性測試 14 3-4 錐蟲藍排除性試驗 14 - 3-4-1 Calu-3 細胞株 14 - 3-4-2 U937細胞株 15 3-5 膽固醇影響類巨噬細胞分化之效率測試 15 3-6 病毒溶斑試驗 15 3-7 免疫螢光染色 16 3-8 定量即時聚合酶鏈鎖反應 16 3-9 細胞訊息RNA之萃取 17 3-10 病毒核酸之萃取 17 3-11 製備勝任細胞 18 3-12 核酸膠體萃取 18 3-13 轉型反應 19 3-14 質體萃取 19 3-15 體外試管轉錄(IN VITRO TRANSCRIPTION)反應 20 3-16 病毒吸附細胞試驗 20 3-17 病毒進入細胞試驗 21 3-18 血球凝集試驗 21 3-19 細胞膜及脂筏分離 22 3-20 細胞膽固醇之萃取 22 3-21 膽固醇定量試驗 23 3-22 西方墨點法 23 - 3-22-1 蛋白質萃取 23 - 3-22-2 蛋白質定量 24 - 3-22-3 膠體製備及電泳 24 - 3-22-4 蛋白質轉漬 24 - 3-22-5 抗體雜交 25 - 3-22-6 顯影呈色 25 3-23 統計分析 25 第四章 結果 26 4-1 膽固醇對於細胞之影響 26 4-1-1 膽固醇對於細胞之毒性測試 26 4-1-2 膽固醇於細胞膜上之表現量 27 4-1-3 膽固醇對於A型流感病毒於Calu-3細胞內複製之影響 28 4-1-4 膽固醇對於流感病毒感染不同細胞之病毒核酸表現量的影響 29 4-1-5 膽固醇對於細胞表面之唾液酸表現量的影響 30 4-1-6 膽固醇對於細胞膜上所表現之病毒HA蛋白質之影響 30 4-2 膽固醇對於流感病毒之影響 31 4-2-1 比較流感病毒株與高膽固醇病毒株於細胞內之複製 31 4-2-2 流感病毒之吸附細胞試驗 33 4-2-3 流感病毒之進入細胞試驗 34 4-2-4 比較高膽固醇病毒與正常病毒之血球凝集能力 34 4-2-5 觀察膽固醇對於流感病毒密度之影響 35 4-3 膽固醇對於細胞感染流感病毒之免疫反應的影響 35 4-3-1 以PMA誘導U937細胞為類巨噬細胞 35 4-3-2 膽固醇對於U937細胞分化為類巨噬細胞之影響 36 4-3-3 膽固醇對於流感病毒感染類巨噬細胞之細胞激素表現影響 37 4-3-4 膽固醇對於流感病毒感染Calu-3細胞之激素表現影響 37 第五章 討論 39 第六章 參考資料 47 圖目錄 圖一、細胞於不同濃度之膽固醇細胞毒性測試 59 圖二、CALU-3細胞於高膽固醇濃度下之細胞型態觀察 60 圖三、觀察CALU-3細胞株之膽固醇表現量 61 圖四、觀察流感病毒於不同濃度膽固醇之病毒生長曲線 62 圖五、不同細胞培養於高膽固醇下感染流感病毒之細胞內病毒核酸表現量 63 圖六、膽固醇對於細胞表現Α2, 3鍵結唾液酸之影響 64 圖七、膽固醇對於細胞表現Α2, 6鍵結唾液酸之影響 65 圖八、高膽固醇細胞感染流感病毒之病毒HA於細胞膜之表現量 66 圖九、比較正常病毒與高膽固醇病毒感染於CALU-3細胞株之病毒生長曲線 67 圖十、觀察膽固醇於流感病毒對CALU-3細胞株之吸附能力影響 68 圖十一、觀察膽固醇於流感病毒對CALU-3細胞株之進入細胞能力影響 69 圖十二、觀察膽固醇對於流感病毒密度之影響 70 圖十三、U937細胞株給予PMA後之細胞形態觀察 71 圖十四、U937給予PMA後巨噬細胞標誌之表現 72 圖十五、U937細胞株於不同濃度膽固醇下分化至類巨噬細胞之效率 73 圖十六、比較臨床分離病毒株與實驗標準株之流感病毒感染不同濃度膽固醇培養類巨噬細胞之細胞激素表現 74 圖十七、流感病毒感染高膽固醇之CALU-3細胞其細胞激素之表現 75 圖十八、利用MTT試驗測量膽固醇對於細胞之細胞毒性測試 76 表目錄 表一、即時定量聚合酶連鎖反應之引子 77 表二、高膽固醇與正常病毒之血球凝集試驗 78 表三、高膽固醇與正常病毒之血球凝集試驗之病毒核酸定量 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 2009年新流感病毒 | zh_TW |
| dc.subject | 膽固醇 | zh_TW |
| dc.subject | 唾液酸 | zh_TW |
| dc.subject | 血球凝集素 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | hemagglutinin | en |
| dc.subject | 2009 pandemic H1N1 | en |
| dc.subject | cytokine | en |
| dc.subject | cholesterol | en |
| dc.subject | sialic acid | en |
| dc.title | 膽固醇於A型流感病毒感染之病毒與宿主間交互作用之影響 | zh_TW |
| dc.title | The Effects of Cholesterol on Virus-Host Interaction During Influenza A Virus Infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高全良(Chuan-Liang Kao),張淑媛(Sui-Yuan Chang),劉旻禕(Helene Minyi Liu) | |
| dc.subject.keyword | 2009年新流感病毒,膽固醇,唾液酸,血球凝集素,細胞激素, | zh_TW |
| dc.subject.keyword | 2009 pandemic H1N1,cholesterol,sialic acid,hemagglutinin,cytokine, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
