Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57514
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓
dc.contributor.authorJenny Guoen
dc.contributor.author郭珍祥zh_TW
dc.date.accessioned2021-06-16T06:49:25Z-
dc.date.available2019-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-24
dc.identifier.citationABAQUS Version 6.12-2. Analysis User’s Manual. Dassault Systèmes Simulia Corporation, Providence, RI, 2012.
Annual Statistical Report (in Chinese). National Fire Agency, Ministry of the Interior, Taiwan, 2011.
Ansari F. Practical implementation of optical fiber sensors in civil structural health monitoring. Journal of Intelligent Material Systems and Structures 2007, 18(8): 879-889.
Besnard G, Hild F and Roux S. “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Experimental Mechanics 2006, 46(6): 789-803.
Billington EW and Tate A. The Physics of Deformation and Flow. McGraw-Hill Inc., New York, 1981, pp. 51-54 and pp. 269-283.
Borg SF. Fundamentals of Engineering Elasticity. Van Nostrand, New York, 1962, pp. 47-51.
Brownjohn JM. Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2007, 365(1851): 589-622.
Cardini AJ and DeWolf JT. Long-term structural health monitoring of a multi-girder steel composite bridge using strain data. Structural Health Monitoring 2009, 8(1): 47-58.
Chang PC, Flatau A and Liu SC. Review paper: health monitoring of civil infrastructure. Structural Health Monitoring 2003, 2(3): 257-267.
Cook RD, Malkus DS and Plesha ME. Concepts and Applications of Finite Element Analysis. Wiley, New York, 2002, pp. 205-208.
De Stefano A and Ceravolo R. Monitoring and response of CFRP prestressed concrete bridge. In Sensing Issues in Civil Structural Health Monitoring. Springer, Netherlands, 2005, pp. 85-94.
Detchev I, Habib A and El-Badry M. Image-based deformation monitoring of statically and dynamically loaded beams. Proc., ISPRS XXII Cong., Melbourne, Australia, 2012.
Doebling SW, Farrar CR, Prime MB and Shevitz DW. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review (LA-13070-MS). Los Alamos National Laboratory, NM (United States), 1996.
Doebling SW, Farrar CR, Prime MB and Shevitz DW. A review of damage identification methods that examine changes in dynamic properties. Shock and Vibration Digest 1998, 30(2): 91-105.
Doornink JD, Phares BM, Wipf TJ and Wood DL. Damage detection in bridges through fiber optic structural health monitoring. In Optics East 2006, International Society for Optics and Photonics, 2006, pp. 637102-1-637102-12.
Dudescu C, Naumann J, Stockmann M and Nebel S. Characterisation of thermal expansion coefficient of anisotropic materials by electronic speckle pattern interferometry. Strain 2006, 42(3): 197-205.
Farhey DN. Bridge instrumentation and monitoring for structural diagnostics. Structural Health Monitoring 2005, 4(4): 301-318.
Farrar CR and Lieven NA. Damage prognosis: the future of structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2007, 365(1851): 623-632.
Farrar CR and Worden K. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2007, 365(1851): 303-315.
Fraser CS and Riedel B. Monitoring the thermal deformation of steel beams via vision metrology. ISPRS Journal of Photogrammetry and Remote Sensing 2000, 55(4): 268-276.
Fung YC. A First Course in Continuum Mechanics. Prentice Hall, London, 1994, pp. 117-119.
Giurgiutiu V, Zagrai A and Bao JJ. Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Structural Health Monitoring 2002, 1(1): 41-61.
Glaser SD, Li H, Wang ML, Ou J and Lynch J. Sensor technology innovation for the advancement of structural health monitoring: a strategic program of US-China research for the next decade. Smart Structures and Systems 2007, 3(2): 221-244.
González-Aguilera D, Gómez-Lahoz J and Sánchez J. A new approach for structural monitoring of large dams with a three dimensional laser scanner. Sensors 2008, 8(9): 5866-5883.
Gordon SJ and Lichti D. Modeling terrestrial laser scanner data for precise structural deformation measurement. Journal of Surveying Engineering 2007, 133(2): 72-80.
Graham A. Kronecker Products and Matrix Calculus: with Applications. Horwood, London, 1981, pp. 21-36.
Han JY. Non-iterative approach for solving the indirect problems of linear reference frame transformations. Journal of Surveying Engineering 2010, 136(4): 150-156.
Han JY. A non-iterative approach for the quick alignment of multi-station unregistered LiDAR point clouds. Geoscience and Remote Sensing Letters, IEEE 2010, 7(4): 727-730.
Han JY, Guo J and Chou JY. A direct determination of the orientation parameters in the collinearity equations. Geoscience and Remote Sensing Letters, IEEE 2011, 8(2): 313-316.
Han JY, Guo J and Liu RY. Alternative algorithm for determining the attitude parameters of a moving platform using multi-antenna GNSS sensors. Journal of Surveying Engineering 2013, 139(4): 194-201.
Han JY, Perng NH and Chen HJ. LiDAR point cloud registration by image detection technique. Geoscience and Remote Sensing Letters, IEEE 2013, 10(4): 746-750.
Han JY, Van Gelder BHW and Lin SL. Rotation-and translation-free estimations of symmetric, rank-two tensors with a case study in LIDAR surveying. Journal of Surveying Engineering 2010, 136(1): 23-28.
Han JY, Van Gelder BHW and Soler T. On covariance propagation of eigenparameters of symmetric n‐D tensors. Geophysical Journal International 2007, 170(2): 503-510.
Hemez FM and Doebling SW. Review and assessment of model updating for nonlinear, transient dynamics. Mechanical Systems and Signal Processing 2001, 15(1): 45-74.
Hertelé S, De Waele W, Denys R and Verstraete M. Investigation of strain measurements in (curved) wide plate specimens using digital image correlation and finite element analysis. The Journal of Strain Analysis for Engineering Design 2012, 47(5): 276-288.
Holzapfel GA. Nonlinear Solid Mechanics: a Continuum Approach for Engineering.. John Wiley & Sons Inc., West Sussex, 2000, pp. 70-91.
Hoult NA, Andy Take W, Lee C and Dutton M. Experimental accuracy of two dimensional strain measurements using digital image correlation. Engineering Structures 2013, 46: 718-726.
Hsiao YY. Research on local bulging failure of thin buckling-restrained braces. Master Thesis (in Chinese), Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, 2013, 126p.
Hu X, Wang B and Ji H. A wireless sensor network‐based structural health monitoring system for highway bridges. Computer‐Aided Civil and Infrastructure Engineering 2013, 28(3): 193-209.
Hung YY and Ho HP. Shearography: An optical measurement technique and applications. Materials Science and Engineering: R: Reports 2005, 49(3): 61-87.
Jagannathan DS, Christiano PP and Epstein HI. Fictitious strains due to rigid body rotation. Journal of the Structural Division 1975, 101(11): 2472-2476.
Jáuregui DV, White KR, Woodward CB and Leitch KR. Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering 2003, 8(4): 212-222.
Ko JM and Ni YQ. Technology developments in structural health monitoring of large-scale bridges. Engineering structures 2005, 27(12): 1715-1725.
Krehbiel JD, Lambros J, Viator JA and Sottos NR. Digital image correlation for improved detection of basal cell carcinoma. Experimental Mechanics 2010, 50(6): 813-824.
Lewis FL. Wireless sensor networks. Smart Environments: Technologies, Protocols, and Applications 2004, 11-46.
Lin SY, Mills JP and Gosling P. Videogrammetric monitoring of as-built membrane roof structures. The Photogrammetric Record 2008, 23(122): 128-147.
López-Higuera JM, Rodriguez Cobo L, Quintela Incera A and Cobo A. Fiber optic sensors in structural health monitoring. Lightwave Technology, Journal of 2011, 29(4): 587-608.
Lu P. A Statistical Based Damage Detection Approach for Highway Bridge Structural Health Monitoring. ProQuest, 2008, pp. 1-22 and pp. 69-128.
Lynch JP and Loh KJ. A summary review of wireless sensors and sensor networks for structural health monitoring. Shock and Vibration Digest 2006, 38(2): 91-130.
Ma S, Zhao Z and Wang X. Mesh-based digital image correlation method using higher order isoparametric elements. The Journal of Strain Analysis for Engineering Design 2012, 47(3): 163-175.
Maas H and Hampel U. Photogrammetric techniques in civil engineering material testing and structure monitoring. Photogrammetric Engineering and Remote Sensing 2006, 72(1): 39-45.
Malvern LE. Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs, 1969, pp. 154-160.
McConnell KG and Varoto PS. Vibration Testing: Theory and Practice. Wiley, New York, 1995, pp. 67-163.
Meng LB, Jin GC and Yao XF. Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Optics and Lasers in Engineering 2007, 45(1): 57-63.
Mikhail EM and Gracie G. Analysis and Adjustment of Survey Measurements. Van Nostrand Reinhold, New York, 1981, pp. 1-10.
Mills JP, Newton I and Peirson GC. Pavement deformation monitoring in a rolling load facility. The Photogrammetric Record 2001, 17(97): 7-24.
Monserrat O and Crosetto M. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and Remote Sensing 2008, 63(1): 142-154.
Montero W, Farag R, Díaz V, Ramirez M and Boada BL. Uncertainties associated with strain-measuring systems using resistance strain gauges. The Journal of Strain Analysis for Engineering Design 2011, 46(1): 1-13.
Ogundipe O, Roberts GW and Brown CJ. GPS monitoring of a steel box girder viaduct. Structure and Infrastructure Engineering 2014, 10(1): 25-40.
Orteu JJ. 3-D computer vision in experimental mechanics. Optics and Lasers in Engineering 2009, 47(3): 282-291.
Ou J and Li H. Structural health monitoring in mainland China: review and future trends. Structural Health Monitoring 2010, 9(3): 219-231.
Pan B, Qian K, Xie H and Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology 2009, 20(6): 062001.
Park HS, Lee HM, Adeli H and Lee I. A new approach for health monitoring of structures: terrestrial laser scanning. Computer‐Aided Civil and Infrastructure Engineering 2007, 22(1): 19-30.
Phares BM, Wipf TJ, Lu P, Greimann L and Pohlkamp M. An Experimental Validation of a Statistical-Based Damage-Detection Approach. No. InTrans Project 08-336, 2011.
Sikorsky C. A strategy to implement structural health monitoring on bridges. In Sensing Issues in Civil Structural Health Monitoring. Springer, Netherlands, 2005, pp. 43-53.
Sohn H, Farr C, Hemez F and Czarnecki JJ. A review of structural health review of structural health monitoring literature 1996-2001 (LA-UR-02-2095). Los Alamos National Laboratory, NM (United States), 2002.
Sun Y, Pang JH, Wong CK and Su F. Finite element formulation for a digital image correlation method. Applied Optics 2005, 44(34): 7357-7363.
Sung WP, Shih MH and Tsai FJ. Development of digital image correlation technique to monitor structural damage based on natural frequency as damage index. Applied Mechanics and Materials 2011, 71: 3899-3903.
Sutton MA, Orteu JJ and Schreier HW. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York, 2009, pp. 81-118.
Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F, Lademo OG and Eriksson M. A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Experimental Mechanics 2008, 48(2): 181-196.
Timoshenko SP and Goodier JN. Theory of Elasticity. Central Book Co., Taipei, 1986, pp. 41-46.
Whelan MP, Albrecht D, Hack E and Patterson EA. Calibration of a speckle interferometry full‐field strain measurement system. Strain 2008, 44(2): 180-190.
Worden K and Dulieu-Barton JM. An overview of intelligent fault detection in systems and structures. Structural Health Monitoring 2004, 3(1): 85-98.
Yang YB, Kuo SR and Wu YS. Incrementally small-deformation theory for nonlinear analysis of structural frames. Engineering Structures 2002, 24(6): 783-798.
Yang YS, Huang CW and Wu CL. A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment. Earthquake Engineering & Structural Dynamics 2012, 41(1): 1-17.
Yi TH, Li HN and Gu M. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge. Measurement 2013, 46(1): 420-432.
Yi TH, Li HN and Gu M. Recent research and applications of GPS‐based monitoring technology for high‐rise structures. Structural Control and Health Monitoring 2013, 20(5): 649-670.
Yoneyama S. Smoothing measured displacements and computing strains utilising finite element method. Strain 2011, 47: 258-266.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57514-
dc.description.abstract結構物之健康監測對人民生命財產的保護相當重要,一般結構監測常以變形為主要觀測量,藉由各種測量方法可得到待測物在不同時間的空間資訊,用以判定待測物的變形行為。近年來隨著各種觀測技術的發展,利用觀測所得之空間資訊可用以推估待測物之位移與應變,並進一步依材料之應變破壞準則判斷結構物之健康狀況。一般由待測物位移場求取對應的應變時,常採用有限差分法或有限元素法分析;惟結構變形時若含有剛體運動,則無法全然正確偵測與排除。為克服此點,本研究首先建立以線性轉換作為應變分析的解算方法,該法具有簡單且明確的幾何意涵,適用於各類均質空間資料的轉換。運用線性轉換法於結構應變分析時,除能正確獲得應變參數外,同時具有解算求解單元剛體運動分量之優點。此外,應變場估計後之參數品質為後續相關應用工作時所需之資料,本研究根據誤差傳播理論建立出參數向量估計值方差協方差矩陣之解析表示式。而透過數值模擬以及各種不同尺度下影像量測的實驗成果顯示,本法皆能夠成功辨識剛體與應變場域之實際行為,並合理評估應變參數之不確定性,對於結構物之破壞評估與相關規劃任務將可提供更為明確的指標依據。zh_TW
dc.description.abstractStructural health monitoring is an ongoing issue. Knowing the state of strain can help to evaluate a structure’s health status by employing strain failure criteria. In this study, a full strain field determination based on the non-iterative solution for linear transformations (NISLT) technique is developed with a main emphasis of identifying rigid-body motion and natural deformation coupled in the displacement fields. Furthermore, an analytical expression of the covariance matrix of the linear transformation parameters determined from the NISLT approach is rigorously derived. By attaining the quality of the displacement field, one can assess the quality of the determined strain parameters. The derivation was verified in numerical simulations and in various types and scales of laboratory experiments which demonstrated that the estimated strain fields differ from the originally assumed principal strain (real strain) or the strain gauge reading within the range of 1.96 times the standard deviation. The derived quality assessment of the NISLT approach provides a fair estimation of how accurate the strain would be under certain observation noise while the corresponding rigid body motion could be explicitly identified. Thereby, the quality of a structural health monitoring system under strain failure criteria could be properly regulated, which is important for the planning of structural monitoring tasks.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:49:25Z (GMT). No. of bitstreams: 1
ntu-103-D98521017-1.pdf: 9931151 bytes, checksum: 1ccd9f1a88e0f6d569a5e2fd98bfeedc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
誌謝 iii
中文摘要 v
Abstract vii
Table of Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 1
Introduction 1
1.1 Overview 2
1.1.1 Role of structural health monitoring 3
1.1.2 Current structural health monitoring techniques 5
1.1.3 Decision making regarding monitoring results 9
1.2 Effectiveness of strain field determination 11
1.3 Research objective and scope 14
1.4 Thesis outline 15

Chapter 2 17
Strain Field Analysis 17
2.1 Overview 18
2.2 Definition of strain 18
2.3 Strain field determination 30
2.3.1 Finite difference method 30
2.3.2 Finite element method 31
2.4 Experimental evaluation 34
2.5 Concluding remarks 37

Chapter 3 39
Strain Field Determination Approach 39
3.1 Overview 40
3.2 NISLT-based strain determination algorithm 40
3.2.1 Mathematical model 41
3.2.2 Estimation of deformation parameters 44
3.3 Experimental evaluation 48
3.3.1 Comparison with FDM and FEM 49
3.3.2 Simply-supported beam analysis 52
3.3.3 3D plate analysis 60
3.3.4 Rigid-body motion analysis 63
3.4 Concluding remarks 65

Chapter 4 66
Quality Assessment 66
4.1 Overview 67
4.2 2D derivation 68
4.3 3D derivation 78
4.4 Experimental evaluation 82
4.4.1 2D experiments 82
4.4.2 3D experiments 87
4.5 Concluding remarks 94

Chapter 5 95
Cases of Image-based Strain Estimation 95
5.1 Overview 96
5.2 Displacement field acqusition 96
5.3 Experimental evaluation 97
5.3.1 Zero-strain experiment 98
5.3.2 Tension experiment 102
5.3.3 Bending experiment 109
5.3.4 Real-size experiment 113
5.4 Concluding remarks 120

Chapter 6 121
Conclusion and Future Work 121
6.1 Conclusion 122
6.2 Future Work 124

References 126
dc.language.isoen
dc.subject剛體運動zh_TW
dc.subject非迭代線性轉換zh_TW
dc.subject誤差傳播zh_TW
dc.subject品質評估zh_TW
dc.subject自然變形zh_TW
dc.subject應變場估計zh_TW
dc.subjectnatural deformationen
dc.subjecterror propagationen
dc.subjectquality assessmenten
dc.subjectnon-iterative solution for linear transformations (NISLT)en
dc.subjectrigid-body motionen
dc.subjectstrain analysisen
dc.title全域應變場估計與嚴謹誤差評估法zh_TW
dc.titleFull Strain Field Determination with Rigorously Derived Quality Assessmenten
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee呂良正,趙鍵哲,吳究,楊名,史天元
dc.subject.keyword應變場估計,剛體運動,自然變形,非迭代線性轉換,誤差傳播,品質評估,zh_TW
dc.subject.keywordstrain analysis,error propagation,quality assessment,non-iterative solution for linear transformations (NISLT),rigid-body motion,natural deformation,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2014-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved