Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯
dc.contributor.authorYu-Ting Choen
dc.contributor.author卓玉庭zh_TW
dc.date.accessioned2021-06-16T06:49:20Z-
dc.date.available2017-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-24
dc.identifier.citationASTM D 4253-00. (2006) . Standard test Methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA.
ASTM D 4254-00. ( 2006) . Standard test method for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken, PA, USA.
ASTM D 4767-11. (2011) . Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA, USA.
ASTM D 7181-11. (2011) . Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA, USA.
Bishop, A. W. and Green, G. E . (1965) . The influence of end restraint on the compression strength of a cohesionless soil. Geotechnique,15(3), 243-266.
Been, K. and Jefferies, M. G. (1985). A state parameter for sands. 35(2).
Been, K. , Jefferies, M. G. and Hachey, J. (1991). The critical state of sands. Geotechnique.41(3), 365-381.
Casagrande, A. (1936) .Characteristics of Cohesionless Soils Affecting the Stsbility of Slopes and Earth Fills. Journal of Boston Society Civil Engineers,257-276.
Casagrande, A. (1940) . Characteristics of cohesionless soils affecting the stability of slopes and earth fills. Journal of Boston Society Civil Engineers, 257- 276.
Colliat-Dangus, J.L., Desrues, J. and Foray, P. (1988) .Triaxial Testing of Granular Soil Under Elevated Cell Pressure. American Society for Testing and Materials, Philadelphia, PA,290-297.
Cubrinovski , M. and Ishihara, K. (1999) . Empirical correlation between SPT N-value and relative density for sandy soils. Soils and Foundations, 39( 5), 61-71.
Cubrinovski , M. and Ishihara, K. (2002) . Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42(6), 65-78.
Cho, G.C., Dodds, J. and Santamarina, J.C. (2006) . Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotech. Geoenviron,132 (5), 591–602.
Fragaszy, R.J. ,Su, J.,Siddiqi, F.H . and Ho, C.L. (1992) .Modeling strength of sandy gravel,Journal of Geotechnical Engineering.118(6),920-935.
Hanzawa, H. (1980) .Undrained strength and stability analysis for a quick sand.Soils Found., 20(2), 17-29.
Head, K. H. (1985) . Manual of Soil Laboratory Testing: Volume 3: Effective Stress Tests: Pentech Press.
Jefferies, M. and Been, K. (2006). Soil Liquefaction : A Critical State Approach. New York: Taylor & Francis.
Lambe, T.W. and Whitman, R.V. (1979) . Soil Mechanics, S.I. Version 2nd edition,.J. Wiley and Sons, Inc, New York .
Lade , P.V. and Yamamuro, J. A. (1997) . Effects of nonplastic fines on static liquefaction of sands.Can. Geotech. J, 34, 918–928.
Penman , A. D. M. (1953) . Shear characteristics of a saturated silt , measured in triaxial compression . Geotechnique,3:8:302.
Roscoe, K. H., Schofield, A. N. and Wroth, C. P. (1958) . On the yielding of soils. Geotechnique, 8(1), 22-53.
Raju, V. S., Sadasivan, S. K. and Venkataraman, M. (1972) . Use of lubricated and conventional end platens in triaxial tests on sands. Soils and Foundations, 12(4), 35-43.
Schofield, A. N. and Wroth, C. P. (1968) . Critical State Soil Mechanics: McGraw-Hill.
Terzaghi, K. (1956) .Varieties of submarine slope failures. Proc. 8th Texas Conf. on Soil Mechanics and Foundation Engineering, University of Texas, Austin.
Varadarajan, A. , Sharma, K. G. , Venkatachalam, K. and Gupta, A. K. (2003) . Testing and Modeling Two Rockfill Materials. Journal of Geotechnical and Geoenvironmental Engineering.129,206-218.
Yamamuro, J. A. and Lade, P.V. (1999) . Experiments and modeling of silty sands susceptible to static liquefaction. Mechanics of Cohesive-Frictional Materials, 4, 545-564.
Yilmaz, Y. (2006) . Relations Between Liquefaction Resistance Obtained from Cyclic Triaxial Test Conducted on Various Graded Sand and Direct Shear Box and Hydraulic Conductivity Test Results, PhD. Thesis, Institute of Science and Technology, Gazi University, Ankara, Turkey, 268.
Yilmaz, Y. (2009) . A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology ,104 ,290–294.
陳俊吉. (2013) .低塑性粉土工程性質之研究.博士論文,國立成功大學土木工程學系.
陳律村. (2013) .傳統三軸應力路徑下石英砂之臨界狀態與其力學行為.碩士論文,國立台灣大學土木工程學系.
詹松儒. (2000) .排水狀況對台北盆地粉土質砂土液化特性行為之研究. 博士論文, 國立台灣大學土木工程學系.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57512-
dc.description.abstract土壤的剪力強度是工程上十分重要的參數,在實驗室也有多種方法可以求得土壤剪力強度,像是直接剪力試驗和三軸試驗等等,但是這兩種試驗相較之下,三軸試驗得到之結果是比較接近實際狀態,因為三軸試驗的破壞面不像直剪試驗受到限制,其破壞面會自然的沿著剪力最弱的面發生,所以得到的剪力強度也比較真實,也較能掌控試驗過程中土體內之應力狀況。
故此,本研究嘗試以新修復之GCTS三軸儀,進行對石英砂之排水與不排水剪力強度研究,不過在試驗之前, GCTS三軸儀的功能需要經過精密校正,方可達到規範許可之精準度,以及,其最新之控制介面軟體功能複雜,需經過多次測試才可以掌控,並且,為了後來使用GCTS三軸儀之學弟妹方便操作,將會把已建立之校正流程與詳細的操作方法列入論文以咨參考。
還有,試驗土樣的最大及最小孔隙比,是反應砂土緊密程度重要的指標,其結果主要是受到顆粒與顆粒間的關係影響,所以,當粒徑較大的顆粒添加粒徑較小的顆粒時,所造成的最大與最小孔隙比之變化,是呈現先下降後上升之趨勢,但是,若是以兩種試驗能量不同的規範,ASTM D 4253、ASTM D 4254規範與日本工業標準 (Japanese Industrial Standards,簡稱JIS) A1224試驗求取相同土樣之孔隙比的話,結果顯示雖然以ASTM或JIS試驗所得之最大與最小孔隙比曲線趨勢非常相似,但是,最大孔隙比的值卻相差甚多,兩者之最大孔隙比曲線基本上呈平行狀態,代表不同的試驗能量對於孔隙比之結果有很大的影響。
zh_TW
dc.description.abstractThe shear strength of soil is a very important engineering parameter. There are many methods which can determine the it shear strength in the laboratory, including the direct shear test and the conventional triaxial test, etc.
This study attempts to use the newly updated GCTS triaxial apparatus to carry out the drained and undrained compression triaxial tests on quartz sand. Before the tests, the function of the GCTS triaxial apparatus needs to be precisely calibrated. In order to make the GCTS triaxial apparatus easy to operate for future users, this study established procedures of calibration and operation.
Also, the maximum and minimum void ratios of soil sample are important parameters to represent soil density. The relationship between particles and particles are mainly influenced on the result. The ASTM D 4253 and ASTM D 4254 are different from the Japanese Industrial Standard (JIS) A1224. If different specification is used to obtain the maximum and minimum void ratio, the trend of the maximum and minimum void ratio curves are very similar for both ASTM and JIS specifications. However, the value of the maximum void ratio curve by ASTM specification is different that that of JIS method. The curve are generally in parallel to each other.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:49:20Z (GMT). No. of bitstreams: 1
ntu-103-R01521129-1.pdf: 7455871 bytes, checksum: 7dd291fa1867913021f00003ecd94895 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目錄 V
表目錄 VIII
圖目錄 IX
符號表 XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 研究流程與架構 2
第二章 文獻回顧 5
2.1 最大與最小孔隙比曲線趨勢 5
2.2 靜態三軸試驗 7
2.2.1 三軸端座影響 7
2.2.2 影響土壤受剪行為之因素 8
2.2.3 土壤臨界狀態行為 9
2.3 小結 11
第三章 試驗方法 25
3.1 試驗土樣 25
3.2 孔隙比試驗設備與流程 25
3.2.1 ASTM規範試驗法 25
3.2.2 日本工業標準(JIS)試驗法 26
3.2.3 相對密度 27
3.3 GCTS三軸儀 27
3.3.1 GCTS三軸儀基本設備介紹 27
3.3.2 荷重元校正 (Load cell) 29
3.3.3 垂直測微器校正 (LVDT) 30
3.3.4 圍壓校正 (Cell Pressure) 31
3.3.5 反水壓校正 (Back Pressure) 31
3.3.6 體積變化儀校正 (Volume Change) 31
3.4 橡皮膜勁度校正 32
3.5 土壤試體準備流程 32
3.5.1 重模試體製作 33
3.5.2 試體飽和階段 34
3.5.3 試體壓密階段 36
3.6 三軸試驗 37
3.6.1 試體檔案建立 37
3.6.2 靜態強度試驗 37
3.6.3 動態強度試驗 39
3.6.4 試驗資料處理 39
第四章 試驗結果 71
4.1 土樣性質 71
4.1.2 最大及最小孔隙比試驗 71
4.2 靜態強度試驗結果 72
4.2.1 S1土樣相對密度 66 % 之飽和壓密排水三軸 (CD)試驗 73
4.2.2 S1土樣相對密度66%之飽和壓密不排水三軸(CU)試驗 73
4.2.3 S2土樣相對密度66%之飽和壓密不排水三軸(CU)試驗 74
4.2.4 S2土樣相對密度55 % 之飽和壓密不排水三軸 (CU) 試驗 75
4.2.5 M1土樣相對密度66.6 % 之飽和壓密不排水三軸 (CU) 試驗 75
4.3 動態強度試驗結果 76
4.3.1 Initial Control Value設定 76
4.3.2 Mean Control Value設定 77
第五章 討論與分析 96
5.1 最大及最小孔隙比性質 96
5.1.1 ASTM規範與JIS規範結果差異 96
5.1.2 孔隙比區間 97
5.2 不同形式三軸室對於砂土受剪行為之影響 97
5.3 石英砂受剪後力學行為分析 99
5.3.1 排水條件對三軸試驗影響 99
5.3.2 相對密度對三軸試驗影響 99
5.3.3有效圍壓對三軸試驗影響 99
5.4 DYNAMIC LOADING程式設定結果 100
第六章 結論與建議 111
6.1 結論 111
6.2 建議 112
參考文獻 114
dc.language.isozh-TW
dc.subject最大及最小孔隙比曲線zh_TW
dc.subjectGCTS三軸儀zh_TW
dc.subject三軸壓縮試驗zh_TW
dc.subjectGCTS triaxial apparatusen
dc.subjectthe maximum and minimum void ratio curvesen
dc.subjecttriaxial compression testen
dc.titleGCTS三軸儀功能研究與混和砂孔隙比變化之分析zh_TW
dc.titleThe study of GCTS triaxial apparatus function and mixing sand void ratioen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee翁作新,郭安妮
dc.subject.keywordGCTS三軸儀,最大及最小孔隙比曲線,三軸壓縮試驗,zh_TW
dc.subject.keywordGCTS triaxial apparatus,the maximum and minimum void ratio curves,triaxial compression test,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2014-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
7.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved