請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57508完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 錢宗良(Chung-Liang Chien) | |
| dc.contributor.author | Yi-Chin Li | en |
| dc.contributor.author | 李宜津 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:49:09Z | - |
| dc.date.available | 2014-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-24 | |
| dc.identifier.citation | Alnaeeli M, Wang L, Piknova B, Rogers H, Li X and Noguchi CT (2012) Erythropoietin in brain development and beyond. Anat Res Int 2012:953264.
Alvarez A (2010) Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells——Nanog transdifferentiates mesenchymal stem cells. Neuroscience & Medicine 01:1-13. Arcasoy MO (2010) Non-erythroid effects of erythropoietin. Haematologica 95:1803-1805. Barry DM, Millecamps S, Julien JP and Garcia ML (2007) New movements in neurofilament transport, turnover and disease. Experimental cell research 313:2110-2120. Bibel M and Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes & development 14:2919-2937. Broxmeyer HE (2013) Erythropoietin: multiple targets, actions, and modifying influences for biological and clinical consideration. J Exp Med 210:205-208. Budhram-Mahadeo V, Morris PJ, Smith MD, Midgley CA, Boxer LM and Latchman DS (1999) p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. The Journal of biological chemistry 274:15237-15244. Budhram-Mahadeo VS, Bowen S, Lee S, Perez-Sanchez C, Ensor E, Morris PJ and Latchman DS (2006) Brn-3b enhances the pro-apoptotic effects of p53 but not its induction of cell cycle arrest by cooperating in trans-activation of bax expression. Nucleic Acids Res 34:6640-6652. Byts NaS, A. L. (2009) Erythropoietin: a multimodal neuroprotective agent. Exp Transl Stroke Med 1:4. Chao MV, Rajagopal R and Lee FS (2006) Neurotrophin signalling in health and disease. Clinical science 110:167-173. Chen SJ, Tsai JC, Lin TY, Chang CK, Tseng TH and Chien CL (2012) Brain-derived neurotrophic factor-transfected and nontransfected 3T3 fibroblasts enhance migratory neuroblasts and functional restoration in mice with intracerebral hemorrhage. J Neuropathol Exp Neurol 71:1123-1136. Chevalier-Larsen E and Holzbaur ELF (2006) Axonal transport and neurodegenerative disease. Bba-Mol Basis Dis 1762:1094-1108. Chiarugi V, Del Rosso M and Magnelli L (2002) Brn-3a, a neuronal transcription factor of the POU gene family: indications for its involvement in cancer and angiogenesis. Molecular biotechnology 22:123-127. Chien CL, Liu TC, Ho CL and Lu KS (2005) Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 cells. J Neurosci Res 80:693-706. Ching GY and Liem RKH (2005) neuronal intermediate filament and neurodegenerative disease, in Intermediate Filaments (Paramino J ed). Cho GW, Kim GY, Baek S, Kim H, Kim T, Kim HJ and Kim SH (2011) Recombinant human erythropoietin reduces aggregation of mutant Cu/Zn-binding superoxide dismutase (SOD1) in NSC-34 cells. Neuroscience letters 504:107-111. Chou CF, Tohari S, Brenner S and Venkatesh B (2004) Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104:1498-1503. Gascoyne DM, Thomas GR and Latchman DS (2004) The effects of Brn-3a on neuronal differentiation and apoptosis are differentially modulated by EWS and its oncogenic derivative EWS/Fli-1. Oncogene 23:3830-3840. Ghezzi P and Brines M (2004) Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 11:S37-S44. Halvorsen S and Bechensteen AG (2002) Physiology of erythropoietin during mammalian development. Acta Paediatr Suppl 91:17-26. He X, Treacy MN, Simmons DM, Ingraham HA, Swanson LW and Rosenfeld MG (1989) Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340:35-41. Hoffman PN (1995) Review : The Synthesis, Axonal Transport, and Phosphorylation of Neurofilaments Determine Axonal Caliber in Myelinated Nerve Fibers. The Neuroscientist 1:76-83. Jerregard H, Akerud P, Arenas E and Hildebrand C (2000) Fibroblast-like cells from rat plantar skin and neurotrophin-transfected 3T3 fibroblasts influence neurite growth from rat sensory neurons in vitro. Journal of neurocytology 29:653-663. Jung C and Shea TB (1999) Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ. Cell Motil Cytoskeleton 42:230-240. Juul SE, Yachnis AT, Rojiani AM and Christensen RD (1999) Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 2:148-158. Kirkeby A, Torup L, Bochsen L, Kjalke M, Abel K, Theilgaard-Monch K, Johansson PI, Bjorn SE, Gerwien J and Leist M (2008) High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thromb Haemost 99:720-728. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27:1050-1056. Lee WC, Chen YY, Kan D and Chien CL (2012) A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells. Journal of biomedical science 19:8. Lewczuk P, Hasselblatt M, Kamrowski-Kruck H, Heyer A, Unzicker C, Siren AL and Ehrenreich H (2000) Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport 11:3485-3488. Logan A, Ahmed Z, Baird A, Gonzalez AM and Berry M (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129:490-502. McDonald JD, Lin FK and Goldwasser E (1986) Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Molecular and cellular biology 6:842-848. McPherson RJ and Juul SE (2010) Erythropoietin for infants with hypoxic-ischemic encephalopathy. Curr Opin Pediatr 22:139-145. Meng Y, Xiong Y, Mahmood A, Zhang Y, Qu C and Chopp M (2011) Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats. J Neurosurg 115:550-560. Perrot R and Eyer J (2013) Intermediate Filaments in Neurodegenerative Diseases, in Neurodegenerative Diseases (Kishore U ed), InTech. Ross CA and Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl:S10-17. Shea TB and Lee S (2011) Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses. Cytoskeleton 68:589-595. Shih CC, Forman SJ, Chu P and Slovak M (2007) Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev 16:893-902. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H and Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. P Natl Acad Sci USA 98:4044-4049. Smith MD, Dawson SJ and Latchman DS (1997a) The Brn-3a transcription factor induces neuronal process outgrowth and the coordinate expression of genes encoding synaptic proteins. Molecular and cellular biology 17:345-354. Smith MD, Melton LA, Ensor EA, Packham G, Anderson P, Kinloch RA and Latchman DS (2001) Brn-3a activates the expression of Bcl-x(L) and promotes neuronal survival in vivo as well as in vitro. Mol Cell Neurosci 17:460-470. Smith MD, Morris PJ, Dawson SJ, Schwartz ML, Schlaepfer WW and Latchman DS (1997b) Coordinate induction of the three neurofilament genes by the Brn-3a transcription factor. The Journal of biological chemistry 272:21325-21333. Subiros N, Del Barco DG and Coro-Antich RM (2012) Erythropoietin: still on the neuroprotection road. Ther Adv Neurol Disord 5:161-173. Tabira T, Konishi Y and Gallyas F, Jr. (1995) Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 13:241-252. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H and Carmichael ST (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26:1269-1274. Vesey DA, Cheung C, Pat B, Endre Z, Gobe G and Johnson DW (2004) Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 19:348-355. Vogel J and Gassmann M (2011) Erythropoietic and non-erythropoietic functions of erythropoietin in mouse models. J Physiol 589:1259-1264. Wagner OI, Ascano J, Tokito M, Leterrier JF, Janmey PA and Holzbaur EL (2004) The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Molecular biology of the cell 15:5092-5100. Wu Y, Shang Y, Sun SG, Liang HF and Liu RG (2007) Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3 beta/caspase-3 mediated signaling pathway. Apoptosis 12:1365-1375. Yabe JT, Chylinski T, Wang FS, Pimenta A, Kattar SD, Linsley MD, Chan WKH and Shea TB (2001) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 21:2195-2205. Yamaleyeva LM, Guimaraes-Souza NK, Krane LS, Agcaoili S, Gyabaah K, Atala A, Aboushwareb T and Yoo JJ (2012) Cell therapy with human renal cell cultures containing erythropoietin-positive cells improves chronic kidney injury. Stem cells translational medicine 1:373-383. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Furukawa Y, Yamada M and Nukina N (2010) Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction. Human molecular genetics 19:2099-2112. Ye H, Kuruvilla R, Zweifel LS and Ginty DD (2003) Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons. Neuron 39:57-68. Yoo J, Kim HS and Hwang DY (2013) Stem cells as promising therapeutic options for neurological disorders. J Cell Biochem 114:743-753. Young M, Oger J, Blanchard MH, Asdourian H, Amos H and Arnason BGW (1975) Secretion of a Nerve Growth-Factor by Primary Chick Fibroblast-Cultures. Science 187:361-362. Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna, Liem RK, Eyer J, Peterson AC, Julien JP and Nixon RA (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006-10019. Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R and Noguchi CT (2014) Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 15:10296-10333. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57508 | - |
| dc.description.abstract | 紅血球生成素(EPO) 是一種目前臨床上被廣泛應用於促進紅血球生成的細胞激素。近年來,有許多研究指出,EPO同時具有神經保護的功能,且被認為是治療神經疾病的潛力藥物。有研究指出,給予病患短時間、高劑量的EPO,雖能改善病患的神經運動能力,然而,過多的EPO可能造成血液循環系統中紅血球容積上升,進而增加血栓等心血管疾病的風險。因此,設計具有能在特定受損區域給予EPO,同時不會造成體內毒性的神經疾病治療方法,是值得嘗試的。
本研究中我們的目的主要有二:(1)建立能過度表達EPO的纖維母細胞株 (EPO-3T3-EGFP);(2)探討並證實其神經保護效果。我們同時將小鼠EPO和綠色螢光蛋白(EGFP)的互補核酸序列(cDNA)轉殖入NIH/3T3纖維母細胞中。經過G418藥物的篩選後,我們建立了一株能過度表達EPO的細胞株(EPO-3T3-EGFP)。接著我們利用逆轉錄聚合酶鏈式反應(RT-PCR)、即時聚合酶鏈式反應(Q-PCR)、細胞免疫染色、西方墨點法以及酶聯免疫吸附試驗(ELISA)等方法對EPO-3T3-EGFP細胞進行EPO產物分析。RT-PCR和Q-PCR的分析結果顯示,EPO的mRNA表現量相較於控制組有明顯地上升。而較多的EPO產物也在細胞免疫染色及西方墨點法分析中被證實。在ELISA實驗結果中,我們更發現EPO-3T3-EGFP細胞的EPO分泌量相較於控制組是非常高且顯著的。 為了測試EPO-3T3-EGFP細胞所分泌的EPO是否有其神經保護功效,我們使用神經退化疾病模式的細胞株(PC12-INT-EGFP)來進行檢驗。之前研究發現,這株過量表達神經元中間絲蛋白α-internexin的PC12細胞經由神經生長因子(NGF)促進分化後,細胞骨架會有不正常的堆積,並且走向凋亡。收集並給予培養EPO-3T3-EGFP細胞的條件培養基後,PC12-INT-EGFP細胞的存活率有顯著的上升。相較於其他控制組, PC12-INT-EGFP細胞中部分標記有EGFP之過量表達團聚的α-internexin (α-INT-EGFP)在動態影像中呈現慢慢鬆解並且移轉至神經突出。在24-48小時間我們發現PC12-INT-EGFP細胞的神經突出生長有明顯加快的現象。最後,藉由細胞免疫染色,我們發現在給予培養EPO-3T3-EGFP細胞的條件培養基後,神經元中間絲蛋白NF-M與其磷酸化型態(p-NF-M),以及有α-INT-EGFP大量堆積在神經突出近端靠近PC12-INT-EGFP細胞質區域情況的細胞較為減少,並且轉送分佈到神經突出。 由本研究的結果,我們可以推論EPO-3T3-EGFP細胞可以穩定且高度表達具有顯著神經保護功能性的EPO。這株EPO-3T3-EGFP細胞能在短時間內分泌大量的EPO並達到可能的生理功效。未來將可以應用在研究以細胞移植治療特定神經損傷區域的實驗動物模式中。 | zh_TW |
| dc.description.abstract | Erythropoietin (EPO), a well-known hematopoietic cytokine, recently has been found with neuroprotection effect and is considered as a potential therapeutic candidate for neurological diseases. Although delivery of short-term high-dose EPO seemed to improve patients’ neuromuscular functions, yet excessive EPO resulted in systematically high hematocrit and increased thrombotic risks. Therefore, new therapeutic strategy of regionally-provided EPO for neurological diseases at non-toxic level needed to be designed.
In our study, we aimed to (1) establish an EPO-overexpressed NIH/3T3 fibroblast cell line, EPO-3T3-EGFP, and (2) verify its possible neuroprotection ability. Mouse EPO cDNA was subcloned into pCMS-EGFP vector and transfected into NIH/3T3 cells. After G418 stable clone selection, a stable EPO-overexpressed EPO-3T3-EGFP cell line was established. The expression of EPO was analyzed by reverse-transcriptase PCR, (RT-PCR), quantitative real-time PCR (Q-PCR), immunocytochemistry, Western blot and ELISA. We found that EPO mRNA expression level was elevated in EPO-3T3-EGFP cells analyzed by RT-PCR and Q-PCR. More EPO product from EPO-3T3-EGFP cells was demonstrated by immunocytochemical data and Western assays. We also found abundant amount of the secreted EPO from EPO-3T3-EGFP cells by ELISA analysis. In order to further confirm the neuroprotection ability of secreted EPO, a cell model of neurodegeneration, PC12-INT-EGFP cells, was used. Previous study showed that abnormal cytoskeletal aggregation and neuronal cell death could be observed after nerve growth factor (NGF) induction for PC12 cells with the overexpression of neuronal intermediate filament α-internexin. After supplementation with conditioned medium prepared from EPO-3T3-EGFP cells, cell survival rate was significantly increased in PC12-INT-EGFP cells. We found that some aggregated green fluorescent α-INT-EGFP (overexpressed-α-internexin with EGFP-tagged) of PC12-INT-EGFP cells was disaggregated and transported into neurite dynamically. Subsequently, acceleration of neurite outgrowth in PC12-INT-EGFP cells was also found during 24-48 hour treatment. Our immunostaining results also showed that the distribution of NF-M (neurofilament medium polypeptide), phosphorylated-NF-M and α-INT-EGFP in PC12-INT-EGFP cells were less aggregated in the perikaryal region and transported into neurite after supplied with conditioned medium from EPO-3T3-EGFP cells. In conclusion, our results showed effective neuroprotection of secreted EPO by the established EPO-overexpressed NIH/3T3 cell line which could provide a potential material for future in vivo studying on cell-based therapies for neurological diseases via secreting EPO on a short-term, high-dose and regional basis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:49:09Z (GMT). No. of bitstreams: 1 ntu-103-R01446003-1.pdf: 4435682 bytes, checksum: 7a2f124542152e55061a21283b33f5bb (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………i
誌謝………………………………………………………………………ii 摘要………………………………………………………………………iii Abstract …………………………………………………………………v List of figures……………………………………………………………viii List of tables………………………………………………………………ix Chapter 1: Introduction……………………………………………………1 Chapter 2: Materials and Methods...………………………………………6 Chapter 3: Results………………………………………………………19 Chapter 4: Discussion ……………………………………………………34 Figure Legends……………………………………………………………42 Tables ……………………………………………………………………63 References……………………………………………………………… 66 Supplementary Videos……………………………………………………71 | |
| dc.language.iso | en | |
| dc.subject | EPO | zh_TW |
| dc.subject | 神經元保護作用 | zh_TW |
| dc.subject | 細胞治療 | zh_TW |
| dc.subject | NIH/3T3 纖維母細胞株 | zh_TW |
| dc.subject | 神經退化 | zh_TW |
| dc.subject | cell-based therapy | en |
| dc.subject | NIH/3T3 fibroblast cell line | en |
| dc.subject | neurodegeneration | en |
| dc.subject | neuroprotection effect | en |
| dc.subject | EPO | en |
| dc.title | 過度表達紅血球生成素的 NIH/3T3 纖維母細胞株之神經元保護作用研究 | zh_TW |
| dc.title | The study of neuroprotection effect of erythropoietin-overexpressed NIH/3T3 fibroblast cell line | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳玉怜(Yuh-Lien Chen),陳旭照(Shiu-Jau Chen) | |
| dc.subject.keyword | EPO,神經元保護作用,細胞治療,NIH/3T3 纖維母細胞株,神經退化, | zh_TW |
| dc.subject.keyword | EPO,neuroprotection effect,cell-based therapy,NIH/3T3 fibroblast cell line,neurodegeneration, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
