請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 久米朋宣(Tomonori Kume) | |
| dc.contributor.author | Meng-Ying Lin | en |
| dc.contributor.author | 林孟穎 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:47:47Z | - |
| dc.date.available | 2015-08-04 | |
| dc.date.copyright | 2014-08-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-25 | |
| dc.identifier.citation | Bain, W.G., Hutyra, L., Patterson, D.C., Bright, A.V., Daube, B.C., Munger, J.W. and Wofsy, S.C. (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agricultural and Forest Meteorology, 131 (3–4), 225-232.
Bekku, Y., Koizumi, H., Oikawa, T. and Iwaki, H. (1997) Examination of four methods for measuring soil respiration. Applied Soil Ecology, 5, 247-254. Bond-Lamberty, B., Bronson, D., Bladyka, E., Gower, S.T. (2011) A comparison of trenched plot techniques for partitioning soil respiration. Soil Biology and Biochemistry, 43 (10), 2108-2114. Buchmann, N. (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32 (11–12), 1625-1635. Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F. and Konopka, A.E. (1994) Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J., 58 (5), 1501-1511. Chang, Y.P. (2009) Seasonal variations of soil respiration at Natural Hardwoods and China-fir plantaion in HuiSun Experiment forest. In Departmetn of Forestry, National Chung Hsing University. (in Chinese) Chang, S.C., Tseng, K.H., Hsia, Y.J., Wang, C.P. and Wu, J.T. (2008) Soil respiration in a subtropical montane cloud forest in Taiwan. Agricultural and Forest Meteorology, 148 (5), 788-798. Chen, T.H., Liu, C.P. and Chung, H.Y. (2011) Growth and biomass of Moso bamboo in FengHuang mountain, Nantou county. Quarterly Jounal of Chinese Forestry, 44 (1), 19-28. (in Chinese) Chiou, C.R., Chen, T.H., Lin, Y., Yang, Y. and Lin, S. (2009) Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. Quarterly Journal of Chinese Forestry, 42 (1), 89-105. Davidson, E.A., Belk, E. and Boone, R.D. (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4 (2), 217-227. Davidson, E.A., Verchot, L.V., Cattanio J.H., Acherman, I.L. and Carvalho, J.E.M. (2000) Effects of soil water content on soil respiration in forests and cattle pastrues of eastern Amazonia. Biogeochenistry, 48, 53-69. Duking, R., Gielis, J. and Liese, W. (2011) Carbon Flux and Carbon Stock in a Bamboo Stand and their Relevance for Mitigating Climate Change. The journal of the America Bamboo Society, 24, 1-6. Epron, D., Nouvellon, Y., Mareschal, L., Moreira, R.M.E., Koutika, L.S., Geneste, B., Delgado-Rojas, J.S., Laclau, J.P., Sola, G., Goncalves, J.L.D. and Bouillet, J.P. (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: Two case-studies in contrasting tropical environments. Forest Ecology and Management, 301, 102-111. Fan, S.H., Xiao, F.M., Wang, S.L., Guan, F.Y., Yu, X.J. and Shen, Z.Q. (2009) Soil respiration of moso bamboo plantation in Huitoung, Hunan Province. Acta Ecologica Sinica, 29 (11), 5971-5977. (in Chinese) Ferrea, C., Zenone, T., Comolli, R. and Seufert, G. (2012) Estimating heterotrophic and autotrophic soil respiration in a semi-natural forest of Lombardy, Italy. Pedobiologia, 55 (6), 285-294. French, N.H.F., Goovaerts, P. and Kasischke, E.S. (2004) Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research: Atmospheres, 109 (D14), D14S08. Goovaerts, P. (1998) Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27 (4), 315-334. Goovaerts, P. (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89 (1–2), 1-45. Goovaerts, P. and Chiang, C.N. (1993) Temporal Persistence of Spatial Patterns for Mineralizable Nitrogen and Selected Soil Properties. Soil Science Society of America. J., 57 (2), 372-381. Hanson, P.J., Edwards, N.T., Garten, C.T. and Andrews, J.A. (2000) Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48 (1), 115-146. Herbst, M., Prolingheuer, N., Graf, A., Huisman, J.A., Weihermuller, L. and Vanderborght, J. (2009) Characterization and Understanding of Bare Soil Respiration Spatial Variability at Plot Scale. Vadose Zone Journal, 8 (3), 762-771. Hirano, Y., Noguchi, K., Ohashi, M., Hishi, T., Makita, N., Fujii, S., Fin, eacute and r, L. (2009) A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root, 3, 26-31. Hogberg, P., Bhupinderpal, S., Lofvenius, M.O. and Nordgren, A. (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. Forest Ecology and Management, 257 (8), 1764-1767. Hsieh, I.F. (2013) Temporal variation in soil CO2 efflux and the controlling factors in a moso bamboo forest, central Taiwan, National Taiwan University. Hung, C.Y. (2012) Assessment of ecosystem carbon stock and net ecosystem productivity of old-aged, Japanese cedar plantation in Xitou, National Taiwan University. Isagi, Y. (1994) carbon stock and cycling in a bamboo phyllostachys bambusoides stand. Ecological Research, 9, 47-55. Isagi, Y., Kawahara, T., Kamo, K. and Ito, H. (1997) net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology, 130, 41-52. Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H. and Muriyarso, D. (2005) Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutrient Cycling in Agroecosystems, 71 (1), 55-62. Janssens, I.A., Lankreijer, H., Matteucci, G., Kowalski, A.S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E.J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev, S., Clement, R., Guemundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N.O., Vesala, T., Granier, A., Schulze, E.D., Lindroth, A., Dolman, A.J., Jarvis, P.G., Ceulemans, R. and Valentini, R. (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7 (3), 269-278. Ji, Y.J. (2008) Biomass and Carbon Storage of Phyllostachys makinoi plantation in central Taiwan. In Departmetn of Forestry, National Chung Hsing University. (in Chinese) Jiang, P., Wang, H., Wu, J., Xu, Q. and Zhou, G. (2009) Winter mulch increases soil CO2 efflux under Phyllostachys praecox stands. Journal of Soils and Sediments, 9 (6), 511-514. Johnston, C.A., Groffman, P., Breshears, D.D., Cardon, Z.G., Currie, W., Emanuel, W., Gaudinski, J., Jackson, R.B., Lajtha, K., Nadelhoffer, K., Nelson, D., Post, W.M., Retallack, G. and Wielopolski, L. (2004) Carbon cycling in soil. Frontiers in Ecology and the Environment, 2 (10), 522-528. Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Nakagawa, M., Yamashita, M., Otsuki, K., Suzuki, M. and Kumagai, T.o. (2009) Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 149 (10), 1666-1673. Khomik, M., Arain, M.A. and McCaughey, J.H. (2006) Temporal and spatial variability of soil respiration in a boreal mixedwood forest. Agricultural and Forest Meteorology, 140 (1–4), 244-256. Kosugi, Y., Mitani, T., Itoh, M., Noguchi, S., Tani, M., Matsuo, N., Takanashi, S., Ohkubo, S. and Rahim Nik, A. (2007) Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147 (1–2), 35-47. Kuzyakov, Y. (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38 (3), 425-448. La Scala Jr, N., Marques Jr, J., Pereira, G.T. and Cora, J.E. (2000) Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biology and Biochemistry, 32 (10), 1459-1462. Lal, R. (2004) Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304 (5677), 1623-1627. Li, R., Werger, M.J.A., During, H.J. and Zhong, Z.C. (1998) Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan, China. Plant Ecology, 135 (1), 103-112. Li, Y.A., Jiang, H., Yuan, H.Y., Zhou, G.M. and Yu, S.Q. (2010) Soil respiration and its regulating factors in the Phyllostachys edulis forest of west Tianmu Mountain, China. Acta Ecologica Sinica, 30 (17), 4590-4597. (in Chinese) Li, Y.F., Zhang, J.J., Chang, S.X., Jiang, P.K., Zhou, G.M., Fu, S.L., Yan, E.R., Wu, J.S. and Lin, L. (2013) Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. Forest Ecology and Management, 303, 121-130. Lin, W.C. (1961) Studies on the classification of Bambusaceae in Taiwan. Report No. 69 of Taiwan Forestry Research Institute, 145. Lin, Y., Wang, C. and Wu, S. (2011) Analyzing carbon conversion factors of four species of Taiwanese bamboo. Taiwan Journal of Forest Science, 26 (4), 341-355. Liu, J., Jiang, P., Wang, H., Zhou, G., Wu, J., Yang, F. and Qian, X. (2011) Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. Forest Ecology and Management, 262 (6), 1131-1137. Liu, S.C. and Kao, Y.P., 1998. Generalized biomass equations for moso bamboo and plantations. Bulletin of Taiwan Forestry Research Institute, 3 (1), 393-406. (in Chinese) Luan, J., Liu, S., Wang, J. and Zhu, X. (2013) Factors affecting spatial variation of annual apparent Q10 of soil respiration in two warm temperate forests. PLoS One, 8 (5), e64167. Luan, J., Liu, S., Zhu, X., Wang, J. and Liu, K. (2012) Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biology and Biochemistry, 44 (1), 143-150. Majdi, H., Pregitzer, K., Moren, A.S., Nylund, J.E. and I. Agren, G. (2005) Measuring Fine Root Turnover in Forest Ecosystems. Plant and Soil, 276 (1-2), 1-8. Makita, N., Yaku, R., Ohashi, M., Fukuda, K., Ikeno, H. and Hirano, Y. (2013) Effects of excising and washing treatments on the root respiration rates of Japanese cedar (Cryptomeria japonica) seedlings. Journal of Forest Research, 18 (4), 379-383. Ngao, J., Epron, D., Delpierre, N., Breda, N., Granier, A. and Longdoz, B. (2012) Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest. Agricultural and Forest Meteorology, 154–155 (0), 136-146. Ohashi, M. and Gyokusen, K. (2007) Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biology and Biochemistry, 39 (5), 1130-1138. Ohashi, M., Kumagai, T.o., Kume, T., Gyokusen, K., Saitoh, T. and Suzuki, M. (2008) Characteristics of soil CO2 efflux variability in an aseasonal tropical rainforest in Borneo Island. Biogeochemistry, 90 (3), 275-289. Ohashi, M., Kume, T., Yamane, S. and Suzuki, M. (2007) Hot spots of soil respiration in an Asian tropical rainforest. Geophysical Research Letters, 34 (8). Ohtsuka, T., Mo, W., Satomura, T., Inatomi, M. and Koizumi, H. (2007) Biometric Based Carbon Flux Measurements and Net Ecosystem Production (NEP) in a Temperate Deciduous Broad-Leaved Forest Beneath a Flux Tower. Ecosystems, 10 (2), 324-334. Okutomi, K., Shinoda, S. and Fukuda, H. (1996) Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7 (5), 723-728. Prolingheuer, N., Scharnagl, B., Graf, A., Vereecken, H. and Herbst, M. (2010) Spatial and seasonal variability of heterotrophic and autotrophic soil respiration in a winter wheat stand. Biogeosciences Discuss., 7 (6), 9137-9173. Raich, J.W. and Schlesinger, W.H. (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44 (2), 81-99. Rayment, M.B. and Jarvis, P.G. (2000) Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry, 32 (1), 35-45. Roxburgh, S.H., Berry, S.L., Buckley, T.N., Barnes, B. and Roderick, M.L. (2005) What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production. Functional Ecology, 19 (3), 378-382. Saiz, G., Green, C., Butterbach-Bahl, K., Kiese, R., Avitabile, V. and Farrell, E. (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 287 (1-2), 161-176. Savage, K.E. and Davidson, E.A. (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 15 (2), 337-350. Schlesinger, W. and Andrews, J. (2000) Soil respiration and the global carbon cycle. Biogeochemistry, 48 (1), 7-20. Schwendenmann, L., Veldkamp, E., Brenes, T., O’Brien, J.J. and Mackensen, J. (2003) Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry, 64, 111-128. Scott-Denton, L.E., Sparks, K.L. and Monson, R.K. (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry, 35 (4), 525-534. Scurlock, J.M.O., Dayton, D.C. and Hames, B. (2000) Bamboo: an overlooked biomass reource? Biomass and Bioenergy, 19 (4), 229-244. Silver, W. and Miya, R. (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129 (3), 407-419. Soe, A.R.B. and Buchmann, N. (2005) Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiology, 25 (11), 1427-1436. Song, F.R. (2012) Estimation of soil respiration of natural broad-leaved forest at Peitungyen Mt. in central Taiwan. In Departmetn of Forestry, National Chung Hsing University. (in Chinese) Song, Q.H., Tan, Z.H., Zhang, Y.P., Cao, M., Sha, L., Tang, Y., Liang, N.S., Schaefer, D., Zhao, J.F., Zhao, J.B., Zhang, X., Yu, L. and Deng, X.B. (2013) Spatial heterogeneity of soil respiration in a seasonal rainforest with complex terrain. Forest Biogeosciences and Forestry, 6 (2), 65-72. Stoyan, H., De-Polli, H., Bohm, S., Robertson, G.P. and Paul, E. (2000) Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil, 222 (1-2), 203-214. Su, H.M. (2013) Net primary production and GHGs emission of coniferous plantations in Xitou, central Taiwan, National Taiwan University. (in Chinese) Subke, J.A., Reichstein, M. And Tenhunen, J.D. (2003) Explaining temporal variration in soil CO2 efflux in a mature spruce foreset in Southern Germeny. Soil Biology and Biochemistry, 35 (11), 1467-1483. Sun, B.K., Chen, Y.T., Yen, T.M. and Li, L.E. (2013) Stand characteristics, aboveground biomass and carbon storage of moso bamboo (Phyllostachys pubescens) stands under different management levels in central Taiwan. Quarterly Journal of Forest Research, 35 (1), 23-32. (in Chinese) Sun, C.H. and Yen, T.M. 2011 Using allometric equation to predict bamboo biomass based on combined data of makino bamboo (Phyllostachys makinoi) and moso bamboo (Phyllostachys pubescens). Quarterly Journal of Forest Research, 33 (3), 1-8. (in Chinese) Suziki, S. (1978) Index of Japanese Bamnusaceae. Gakken, Tokyo. Suzuki, S. and Nakagoshi, N. (2008) Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecological Research, 23 (4), 641-647. Taiwan Forestry Bureau. (1995) The Third National Forest Resources and Land Use in Taiwan, 258. (in Chinese) Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O. and Gundersen, P. (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255 (1), 35-48. Wang, T.D. and Kao, Y.B. (1986) The growth and development of bamboo. Modern Silviculture, 2(1), 47-63. (in Chinese) Wang, B., Jiang, Y., Wei, X., Zhao, G., Guo, H. and Bai, X. (2011) Effects of forest type, stand age, and altitude on soil respiration in subtropical forests of China. Scandinavian Journal of Forest Research, 26 (1), 40-47. Wang, C., Yang, Z.J., Chen, G.S., Fan, Y.X., Liu, Q. and Tian, H. (2011) Characterisitcs of soil respiration in Phyllostachys edulis forest in Wanmulin Natural Reserce and related affecting factors. Chinese Journal of Applied Ecology, 22 (5), 1212-1218. (in Chinese) Wang, J., Chen, T.H., Chang, H.C., Chung, H.Y., Li, T.I. and Liu, C.P. (2009) The structures, aboveground biomass, carbon storage of Phyllostachys pubescens stands in Huisun experiment forest station and Shi-Zhuo. Quarterly Journal of Forest Research, 31 (4), 17-26. (in Chinese) Xiao, F.M., Fan, S.H., Wang, S.L., Xiong, C.Y. and Shen, Z.Q. (2009) Soil Carbon Cycle of Phyllostachys edulis Plantation in Huitong Region, Hunan Province. Scientia Silvae Sincae, 45 (6), 12-15. (in Chinese) Xu, M. and Qi, Y. (2001a) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7 (6), 667-677. Xu, M. and Qi, Y. (2001) Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan Forest. Global Biogeochemical Cycles, 15 (3), 687-696. Yen, T.M. (2003) Three growth models for Moso bamboo (Phyllostachys heterocyala) culm height growth. Quartely Journal of Chinese Forestry, 36(3), 285-296. (in Chinese) Yen, T.M., Ji, Y.J. and Lee, J.S. (2010) Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260 (3), 339-344. Yen, T.M. and Lee, J.S. (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261 (6), 995-1002. Zhou, B.Z., Fu, M.Y., Xie, J.Z.,Yang, X.S., Li, Z.C. (2005) Ecological functions of bamboo forest: Research and Application. Journal of Forestry Research, 16 (2), 143-147. Zhou, G. and Jiang, P. (2004) Density, Storage and Spatial distribution of Carbon in Phyllostachy pubescens forest. Scientia Silvae Sincae, 40 (6), 20-24. (in Chinese) Zhou, G., Meng, C., Jiang, P. and Xu, Q. (2011) Review of Carbon Fixation in Bamboo Forests in China. The Botanical Review, 77 (3), 262-270. Zhou, G., Wu, J. and Jiang, P. (2006) Effects of different management models on carbon storage in Phyllostachys pubescens forests Journal of Beiging forestry university, 28 (6), 51-55. (in Chinese) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57477 | - |
| dc.description.abstract | 近十幾年來在東亞地區發現竹林逐漸擴散的現象,會造成當地碳循環的改變,土壤呼吸是一個判斷森林生態系是否為碳源或碳庫的重要依據。了解森林生態系中土壤呼吸的空間異質性不僅能夠深入探討二氧化碳的變化,更能獲得比較適當的樣本數以推估土壤呼吸的年量,並且得知其如何影響環境氣候。
本研究的目的是希望了解分布在台灣中部山區雲霧林帶的孟宗竹林(Phyllostachys pubescens)其土壤碳循環特性。因此本研究檢測在空間變異中土壤呼吸的特性以及影響的因子,進而應用空間變異的特性來推估土壤呼吸的年量,並且利用土壤呼吸年量、地上部和地下部碳蓄積的測量來檢視孟宗竹林的碳循環過程。 試驗地在臺灣大學實驗林的溪頭營林區中一片孟宗竹純林中,設置一個435平方公尺的樣區進行研究,並在樣區中設置了28個樣點已量測土壤呼吸的空間變異特性,以及觀察相關的環境因子,包含土壤溫度、土壤水分、土壤孔隙率、土壤碳氮比以及林分結構與土壤呼吸間的關係。在空間變異的部份則是利用了地理統計中的半變異數來分析其特性。並測量竹林中各碳庫的碳蓄積量,包含土壤、根、地下莖、枯枝落葉和地上部竹林來了解孟宗竹林的碳循環特性。 土壤呼吸全年範圍為0.92 to 5.10 μmol CO2 m-2 s-1,最高發生於六月最低發生於一月。時間變異的控制因子主要受到土壤溫度的影響(R2= 0.873)。空間變異較大值主要發生於六月至八月間,九月和三月間的空間變異情形趨緩,而在空間自相關的範圍(range)參數為2.95- 16.96公尺,此範圍和熱帶雨林的結果相近。較大值一樣發生於六、七、八月,說明了較溫暖的季節會導致較高的土壤呼吸值以及比較大的範圍參數。本研究中發現控制土壤呼吸空間變異的因子為土壤水分和範圍間的林分結構(3.5- 8 m),這2個環境因子和土壤呼吸呈現顯著負相關不論是在每個月分的尺度或是年間的尺度亦然。 本研究中土壤呼吸年量為3.19 μmol CO2 m-2 s-1 (=1208.02 g C m-2 yr-1)。這個結果高於相似氣候帶的針葉林與天然闊葉林。地上部和地下部的碳蓄積分別為36.37和111.75 Mg C ha-1。淨初生產力為(12.48 Mg C ha-1 yr-1),高於鄰近的柳杉林(9.6 Mg C ha-1 yr-1)、台灣杉林(8.7 Mg C ha-1 yr-1)以及香杉林(2.95- 5.11 Mg C ha-1 yr-1)。並且此研究的淨生態系生產力(NEP) (= 7.17 Mg C ha-1 yr-1)也高於鄰近柳杉林,這結果不僅說明孟宗竹林扮演了可觀的碳庫角色更指出竹林於地下部的碳循環過程在森林生態系中扮演了重要而且獨特的特性。 | zh_TW |
| dc.description.abstract | The expansion of bamboo forest to surrounding ecosystems in eastern Asian countries such as Taiwan can alter the local carbon balance. Soil respiration is a key path to determine whether forest ecosystem is carbon sink or carbon source. Spatial heterogeneity of soil CO2 efflux (Rs) in forested ecosystems is essential not only for understanding CO2 dynamics but also for suitable sampling design to estimate annual Rs and the response to environmental changes. The aim of this study is to understand the characteristic of soil carbon cycle in a Moso bamboo (Phyllostachys pubescens) forest, situated in a montane cloud forest zone of central Taiwan. To this aim, this study examined spatial variations in Rs and their control factors, and estimated annual Rs with the spatial representatives. Also, using the annual Rs and carbon stock measurements including above and belowground, this study estimated carbon cycles in the moso bamboo forest.
We selected a 435 m2 plot in a pure Moso bamboo forest in National Taiwan University Forest, central Taiwan. The 28 soil CO2 efflux measurement locations were set in the plot. We observed the several factors including soil temperature, soil water content, soil porosity, root mass, soil C/N ratio and stand structure to examine controlling factors regulating spatial variations in Rs. Also, the spatial variation of Rs was analyzed by using semivariance. As well, to understand the characteristic of carbon cycle in Moso bamboo forest, we estimated soil carbon stock, root carbon stock, rhizome carbon stock, litter fall carbon stock and aboveground bamboo carbon stocks. Rs ranged from 0.92 to 5.10 μmol CO2 m-2 s-1, which was highest in June and lowest in January. The temporal changes in Rs averaged over 28 locations were strongly impacted by soil temperature (R2= 0.873). Higher spatial variation was in June to August, and less in September to March. The range of autocorrelation in soil CO2 efflux was 2.95 to 16.96 m, and was comparable with that of tropical rainforests. The larger range of autocorrelation in Rs was appeared up in June, July, and August, which indicated that warm season would lead to higher Rs and larger range of autocorrelation. We found the controlling factors to regulate the spatial variation in Rs were soil water content (SWC) and stand structure within 3.5 to 8 m around the measurement locations. These two controlling factors were significantly correlated with the Rs negatively whether it was in monthly and annual time scale. The annual mean Rs with the consideration of Rs spatial variation characteristics was 3.19 μmol CO2 m-2 s-1 (=1208.02 g C m-2 yr-1) from May 2013 to April 2014. Rs in the bamboo forest was much higher than coniferous and natural broadleaf forest. Aboveground and belowground carbon stock was 36.37 and 111.75 Mg C ha-1, respectively. This study found that NPP in this study (12.48 Mg C ha-1 yr-1) was higher than cedar forests (9.6 Mg C ha-1 yr-1), Taiwania forest (8.7 Mg C ha-1 yr-1), and China fir forest (2.95- 5.11 Mg C ha-1 yr-1) in central Taiwan. Further, NEP in this site was estimated as 7.17 Mg C ha-1 yr-1, probably larger than the cedar forest. Therefore, the NEP informed that the Moso bamboo forest was a strong carbon sink in terrestrial forest ecosystem. These results indicated that bamboo forest is a specific forest than others and the belowground processes play an essential role of forest carbon cycle. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:47:47Z (GMT). No. of bitstreams: 1 ntu-103-R01625020-1.pdf: 4696657 bytes, checksum: 7d275e0d0d740002f84bfb9dac98ba91 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract vi Chapter 1 Introduction 6 Chapter 2 Literature Review 10 2.1 Moso bamboo (Phyllostachys pubescens) 10 2.2 Belowground carbon cycle 12 2.3 Soil respiration (Rs) 13 2.4 Temporal and Spatial variation in Rs 14 2.4.1 Semivariance application 15 2.4.2 Environmental factors 17 Chapter 3 Material and Method 24 3.1 Site description 24 3.2 Soil CO2 efflux (Rs) 24 3.3 Environment factors 25 3.3.1 Soil temperature (Ts) 25 3.3.2 Soil volumetric water content (SWC) 26 3.3.3 Soil C/N ratio 26 3.3.4 Soil porosity 27 3.3.5 Root density 27 3.3.6 Stand structure 28 3.4 Carbon stock in belowground and aboveground 28 3.4.1 Soil carbon stock (Cs) 29 3.4.2 Carbon stock in litter (Cl) 29 3.4.3 Root carbon stock (Cr) 30 3.4.4 Bamboo carbon stock (Cb) 30 3.4.5 Carbon content 32 3.5 Estimate for Net primary production (NPP) and Net ecosystem production (NEP) in Moso bamboo forest 33 3.5.1 NPP estimation 34 3.5.2 Heterotrophic respiration (Rh) 35 3.6 Statistical analysis 36 Chapter 4 Results and Discussion 40 4.1 Year-to-year variations in stand structure 40 4.2 Soil CO2 efflux (Rs) 41 4.2.1 Characteristic of spatial variation in Rs in Moso bamboo forest 41 4.2.2 Controlling factors for spatial variation in soil CO2 efflux (Rs) 44 4.3 Soil carbon cycle 47 4.3.1Annual soil respiration in Moso bamboo forest 47 4.3.2 Ecosystem biomass and carbon stock 51 4.3.3 Heterotrophic respiration (Rh) and autotrophic respiration (Ra) 54 4.3.4 Estimate NPP and NEP in Moso bamboo forest 55 Chapter 5 Conclusion 58 Table 61 Figure 76 Reference 91 Appendix 99 | |
| dc.language.iso | en | |
| dc.subject | 控制因子 | zh_TW |
| dc.subject | 孟宗竹林 | zh_TW |
| dc.subject | 空間變異 | zh_TW |
| dc.subject | 土壤呼吸 | zh_TW |
| dc.subject | 碳循環 | zh_TW |
| dc.subject | 淨初級生產力 | zh_TW |
| dc.subject | 淨生態系生產力 | zh_TW |
| dc.subject | Moso bamboo forest | en |
| dc.subject | spatial variation | en |
| dc.subject | control factors | en |
| dc.subject | Soil CO2 efflux | en |
| dc.subject | NEP | en |
| dc.subject | NPP | en |
| dc.title | 臺灣溪頭孟宗竹林碳循環特性 | zh_TW |
| dc.title | Soil Carbon Cycling of a Moso Bamboo Forest in Xitou, Central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉瓊霦,顏江河,鄭智馨 | |
| dc.subject.keyword | 土壤呼吸,空間變異,控制因子,孟宗竹林,碳循環,淨初級生產力,淨生態系生產力, | zh_TW |
| dc.subject.keyword | Soil CO2 efflux,spatial variation,control factors,Moso bamboo forest,NPP,NEP, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
