Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証
dc.contributor.authorChun-Ming Changen
dc.contributor.author張峻銘zh_TW
dc.date.accessioned2021-06-16T06:47:42Z-
dc.date.available2019-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-07-25
dc.identifier.citation1. 黃孟嬌,2014年全球LED照明產業環境掃描,工業技術研究院 產業經濟與趨勢研究中心。(2014)
2. 李芷氤,全球LED照明產業環境掃描,工業技術研究院 產業經濟與趨勢研究中心。(2012)
3. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the 〃Moth Eye〃 principle,” Nature, 244, 281-282. (1973)
4. H. C. von Baeyer, “The lotus effect”, Science, 40, 12-15. (2000)
5. Parker, A. R. and Lawrence, C. R., “Water capture from desert fogs by a Namibian beetle”, Nature, 414, 33-34. (2001)
6. K. Tadatomo, H. Okagawa, Y. Ohuchi, H. Kudo, Y. Sudo and T. Taguchi, “High- output power near-ultraviolet and violet light-emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy ”, Proc. SPIE 5187, 3rd Inter. Conf. on Solid State Lighting, 243, Jan. 26. (2004)
7. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kogaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., 72, 211-213. (1998)
8. A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy”, Jpn. J. Appl. Phys., 36, L899-L902. (1997)
9. T. Detchprohm, M. Yano, S. Sano, R. Nakamura, S. Mochiduki, T. Nakamura, H. Amano and I. Akasaki, “Hetero-epitaxial lateral overgrowth of GaN on periodically grooved substrates”, Jpn. J. Appl. Phys., 40, L16-L19. (2001)
10. S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates”, Solid-State Electron., 47, 1539-1542. (2003)
11. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices”, Nature 386, 351-359. (1997)
12. G. Held, Introduction to Light Emitting Diode Technology and Applications, Toylor & Francis Group, CRC Press., Boca Raton. (2009)
13. S. Guha, and N. A. Bojarczuk, “Ultraviolet and violet GaN light emitting diodes on silicon”, Appl. Phys. Lett, 72, 415-417. (1998)
14. D. K. Kim and C. B. Park, “Growth of crack-free GaN films on Si(111) substrates with AlN buffer layers”, J. Korean Phys. Soc., 49, 1497-1500. (2006)
15. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy”, Jpn. J. Appl. Phys., 40, L583-L585. (2001)
16. I. Akasaki and H. Amano, “Breakthroughs in improving crystal quality of GaN and invention of the p–n junction blue-light-emitting diode”, Jpn. J. Appl. Phys., 45, 9001-9010. (2006)
17. V. Pishchik, L. A. Lytvynov and E. R. Dobrovinskaya, Valerian, Sapphire Material, Manufacturing, Applications, Springer. (2009)
18. C. K. Inoki, T. S. Kuan, C. D. Lee, A. Sagar, R. M. Feenstra, D. D. Koleske, D. J. Díaz, P. W. Bohn and I. Adesida, “Growth of GaN on porous SiC and GaN substrates”, J. Electron. Mater., 32, 855-860. (2003)
19. S. Albert, A. Bengoechea-Encabo, P. Lefebvre, M. A. Sanchez-Garcia, E. Calleja, U. Jahn and A. Tramper, “Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates”, Appl. Phys. Lett. 99, 131108. (2011)
20. S. J. Kim, “Vertical electrode GaN-based light-emitting diode fabricated by selective wet etching technique”, Jpn. J. Appl. Phys., 44, 2921-2924. (2005)
21. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates”, IEEE Photonics Technol. Lett., 18, 1152-1154. (2006)
22. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito and H. Miyake, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, J. Cryst. Growth, 221, 316-326. (2000)
23. K. Orita, S. Tamura, T. Takizaki, T. Ueda, M. Yuri, S. Takigawa and D. Ueda, “High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal”, Jpn. J. Appl. Phys., 43, 5809-5813. (2004)
24. J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kuo, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates”, IEEE Photonics Tech. Lett. 20, 1193-1195. (2008)
25. K. J. Byeon, S. Y. Hwang and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light emitting diodes using thermally curable monomer-based nanoimprint lithography”, Appl. Phys. Lett. 91, 091106. (2007)
26. Y. Li, S. You, M. Shu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire”, Appl. Phys. Lett. 98, 151102. (2011)
27. Y. T. Hsieh and Y. C. Lee, “Direct metal contact printing lithography for patterning sub-micrometer surface structures on a sapphire substrate”, J. Micromech. Microeng. 21, 015001. (2011)
28. J. I. Sim, B.G. Lee, J.W. Yang, H-D Yoon and T.G. Kim, “The light extraction efficiency of p-GaN patterned InGaN/GaN light-emitting diodes Fabricated by size-controllable nanosphere lithography”, Jpn. J. Appl. Phys., 50, 102101. (2011)
29. T. S. Kim, S. M. Kim, Y. H. Jang and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography”, Appl. Phys. Lett., 91, 171114. (2007)
30. Y. Y. Kudryk, A. K. Tkachenko and A. V. Zinovchuk, “Temperature-dependent efficiency droop in InGaN-based light-emitting diodes induced by current crowding”, Semicond. Sci. Technol., 27, 05501. (2012)
31. T. Shinagawa, Y. Abe, H. Matsumoto, B. Li, K. Murakami, N. Okada, K. Tadamoto, M. Kannaka and H. Fujii, “Light-emitting diodes fabricated on nanopatterned sapphire substrates by thermal lithography”, Phys. Status Solidi, C7, 2165-2167. (2010)
32. Y. J. Sung, H. S. Kim, Y. H. Lee, J. W. Lee, S. H. Chae, Y. J. Park and G. Y. Yeom, “High rate etching of sapphire wafer using Cl2/BCl3/Ar inductively coupled plasma”, Mat. Sci. Eng. B, 82, 50-52. (2001)
33. C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine based inductively coupled plasma”, Mat. Sci. Eng. B, 93, 60-63. (2002)
34. C. H. Jeong, D. W. Kim, K. N. Kim and G. Young, “A study of sapphire etching characteristics using BCl3-based inductively coupled plasmas,” Jpn. J. Appl. Phys., 41, 6206-6208. (2002)
35. D. W. Kim, C. H. Jeong, K. N. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung and G. Y. Yeom, “High rate sapphire (Al2O3) etching in inductively coupled plasmas using axial external magnetic field”, Thin Solid Films, 435, 242-246. (2003)
36. D. W. Kim, C. H. Jeong, K. N. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung and G. Y. Yeom, “High rate sapphire etching using BCl3-based inductively coupled plasma”, J. Korean Phys. Soc., 42, 795-733. (2003)
37. Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang and S. C. Shei, “ICP etching of sapphire substrates”, Opt. Mater., 27, 1171-1174. (2005)
38. D. J. Kang, I. S. Kim, J. H. Moon and B. T. Lee, “Inductively coupled plasma reactive ion etching of sapphire using C2F6- and NF3-based gas mixtures,” Mater. Sci. Semicond. Process., 11, 16-19. (2008)
39. P. C. Tsai, R. W. Chuang and Y. K. Su, “Lifetime tests and junction-temperature measurement of InGaN light-emitting diodes using patterned sapphire substrates”, J. Lightwave Technol., 25, 591-596. (2007)
40. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys. 103, 014314. (2008)
41. D. S. Wuu, H. W. Wuu, S. T. Chen, T. Y. Tsai, X. Zheng and R. H. Horng, “Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates”, J. Cryst. Growth, 311, 3063-3066. (2009)
42. D. Hull, Introduction to dislocations, Oxford Press., Burlington. (2007)
43. S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall Press., New Jersey. (2001)
44. E. Fred. Schubert, Light-emitting diode, Cambridge university Press., New York. (2006)
45. K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang and S. T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching”, Appl. Phys. Lett., 90, 163123. (2007)
46. C. M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores”, Thin Solid Films, 516, 433-437. (2007)
47. M. J. Huang, C. R. Yang, C. M. Chang, N. N. Chu and M. H. Shiao, “Silicon vertical micro-structure fabrication by catalytic etching”, J. Micromech. Microeng., 22, 085002. (2012)
48. H. Cao, Z. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu and S. Y. Chou, “Fabrication of 10 nm enclosed nanofluidic channels”, Appl. Phys. Lett., 81, 174-176. (2002)
49. S. M. Yang, N. Coombs and G. A. Ozin, “Micromolding in inverted polymer opals (MIPO): Synthesis of hexagonal mesoporous silica opals”, Adv. Mater., 12, 1940-1944. (2000)
50. H. J. Nam, D. Y. Jung, G. R. Yi and H. Choi, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres”, Langmuir 22, 7358-7363. (2006)
51. F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. von Freymann, I. Manners, R. Zentel and G. A. Ozin, “Redox-tunable defects in colloidal photonic crystals”, Adv. Mater., 17, 2455-2458. (2005)
52. J. Dutta and H. Hofmann, “Self-organization of colloidal nanoparticles', encyclopedia of nanoscience and nanotechnology”, X, 1-23. (2003)
53. W. C. Bigelow, D. L. Pickett and W. A. Zisman, “Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids”, J. Colloid Interface Sci., 1, 513-538. (1946)
54. U. C. Fischer and H. P. Zingsheim, 'Submicroscopic pattern replication with visible light', J. Vac. Sci. Technol. B, 19, 881-885. (1981)
55. O. V. N. Denkov, P. Kralchevski, I. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir, 8, 3183-3190. (1992)
56. P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov and K. Nagayama, “Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface”, J. Colloid Interface Sci., 151, 79-94. (1992)
57. A. D. Ormonde, E. C. M. Hicks, J. Castillo and R. P. V. Duyne, “Nanosphere Lithography:Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy”, Langmuir, 20, 6927-6931. (2004)
58. J. Rybczynski, U. Ebels and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids Surf., A, 219, 1-6. (2003)
59. H. W. Deckman and J. H. Dunsmuir, “Applications of surface textures produced with natural lithography”, J. Vac. Sci. Technol. B, 1, 1109-1112. (1983)
60. M. H. Shiao, C. M. Chang, S. W. Huang, C. T. Lee, T. C. Wu, W. J. Hsueh, K. J. Ma and D. Y. Chiang, “The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching”, J. Nanosci. Nanotechnol., 12, 1641-1644. (2012)
61. M. Mehta, M. Ruth and K. A. Piegdon, “Inductively coupled plasma reactive ion etching of bulk ZnO single crystal and molecular beam epitaxy grown ZnO films,” J. Vac. Sci. Technol. B, 27, 2097-2101. (2009)
62. C. B. VartuIi, S. J. Pearton, J. W. Lee, .J. D. MacKenzie and C. R. Abernathy, “Inductively coupled plasma etching of Ill-V nitrides in CH4/H2/Ar and CH4/H2/N2 chemisfries,” J. Electrochem. Soc., 144, 2844-2847. (1997)
63. H. K. Kim, J. W. Bae, T. K. Kim, K. K. Kim, T. Y. Seong and I. Adesida, “Inductively coupled plasma reactive ion etching of ZnO using BCl3-based plasmas,” J. Vac. Sci. Technol. B, 21, 1273-1277. “(2003)
64. J. M. Lee, K. M. Chang, K. K. Kim, W. K. Choi and S. J. Parka, “Dry etching of ZnO using an inductively coupled plasma,” J. Electrochem. Soc., 148, G1-G3. (2001)
65. G. K. Lee, J. H. Moon and B. T. Lee, “Inductively coupled plasma reactive ion etching of ZnO using C2F6- and NF3-based gas mixtures,” Semicond. Sci. Technol., 21, 971-974. (2006)
66. K. P. Hsueh, “Elucidating surface properties of dry-etched ZnO using H2/CH4 and H2/CH4/Ar plasma”, Appl. Surf. Sci., 257, 969-973. (2010)
67. C. M. Chang, M. H. Shiao, D. Chiang, C. T. Yang, M. J. Huang and W. J. Hsueh, “Submicron-size patterning on the sapphire substrate prepared by nanosphere lithography and nanoimprint lithography techniques”, Met. Mater.-Int., 19, 869-874. (2013)
68. R. E. Lee, Scanniing Electron Microscopy and X-ray Microanalysis, Prentice Hall Press., New Jersey. (1993)
69. C. M. Chang, M. H. Shiao, D. Chiang, C. T. Yang, M. J. Huang, C. T. Cheng and W. J. Hsueh, “Surface property study of different patterning sapphire structures by ICP-RIE”, Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference, 372-375. (2013)
70. A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato and K. Nakagawa, “High-resolution blue-laser mastering using an inorganic photoresist”, Jpn. J. Appl. Phys., 42, 769-771. (2003)
71. E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering”, Jpn. J. Appl. Phys., 44, 3574-3577. (2005)
72 T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films”, Appl. Phys. Lett., 85, 639-641. (2004)
73. K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices”, Microelectron. Eng., 85, 1197-1201. (2008)
74. O. S. Heavens, Optical properties of thin solid films, Dover, New-York, 1991.
75. D. Y. Chiang, C. H. Chu, H. P. Chiang, D. P. Tsai, “The optical constants of thin film materials calculated from the reflectance and transmittance measurements”, Optical Data Storage, SPIE, 7505, 750518. (2009)
76. C. P. Liu, G. R. Jeng and H. E. Huang, “Properties of GeSbSn layer used as phase-change recording medium”, Mater. Trans., 48, 847-853. (2007)
77. D. Chiang, C. M. Chang, S. W. Chen, C. T. Yang and W. J. Hsueh, “Physical properties of an oxide photoresist film for submicron pattern lithography”, Thin Solid Films, 542, 409-414. (2013)
78. C. M. Chang, D. Chiang, M. H. Shiao, C. T. Yang and W. J. Hsueh, “Dual layer photoresist complementary lithography applied on sapphire substrate for producing submicron patterns”, Microsyst. Technol., 19, 1745-1751. (2013)
79. C. M. Chang, M. H. Shiao, D. Chiang, C. T. Yang, M. J. Huang, C. Ta. Cheng and W. J. Hsueh, “Submicron patterns on sapphire substrate produced by dual layer photoresist complementary lithography”, Applied Mechanics and Materials, 284-287, 334-341. (2013)
80. S. Karmalkar, D. M. Sathaiya and M. S. Shur, “Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., 82, .3976-3978. (2003)
81. D. M. Sathaiya and S. Karmalkar, “Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors”, J. Appl. Phys., 99, 093701. (2006)
82. S. Karmalkar, N. Satyan and D. M. Sathaiya, “On the resolution of the mechanism for reverse gate leakage in AlGaN/GaN HEMTs”, IEEE Electron Device Lett., 27, 87-89. (2006)
83. J. Kotani, M. Tajima, S. Kasai and T. Hashizume, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures”, Appl. Phys. Lett., 91, 093501. (2007)
84. E. J. Miller, D. M. Schaadt, E. T. Yu, C. Poblenz, C. Elsass and J. S. Speck, “Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope”, J. Appl. Phys., 91, 9821-9826. (2002)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57475-
dc.description.abstract本研究以感應耦合電漿反應離子蝕刻方式進行藍寶石基板蝕刻,並利用奈米球微影、奈米壓印技術、熱微影技術相變化材料、雙層光阻互補性微影四種不同技術製作圖案化蝕刻遮罩,搭配蝕刻製程製備圖案化藍寶石基板。在奈米球微影與奈米壓印技術方面,分別以金屬材料與高分子材料製作蝕刻遮罩;在熱微影相變化材料方面,以鍺、銻、錫、氧(Ge, Sb, Sn, O, GSSO)四元金屬氧化物薄膜材料製作蝕刻遮罩;在雙層光阻互補性微影技術方面,以雙層互補式光阻製作蝕刻遮罩,接續使用感應耦合電漿反應離子蝕刻技術,以合適的蝕刻參數,分別使用上述四種不同技術所製作的蝕刻遮罩,製備圖案化藍寶石基板。完成次微米尺度之圖案化藍寶石基板後,將基板送至LED磊晶廠進行裸晶測試,量測LED的發光效率。
首先在奈米球微影技術製作圖案化藍寶石基板方面,利用調整氧電漿蝕刻時間,將聚苯乙烯的奈米球體的直徑控制於330 nm-600 nm之間,再搭配電子槍鍍膜技術製鍍金屬鉻與鎳作為蝕刻遮罩,以舉離法製作不同間距的金屬蝕刻遮罩,其圓形圖案的直徑及間距控制於330-510 nm以及75-170 nm。並於合適的蝕刻條件下進行蝕刻製程。鉻對藍寶石基板與鎳對藍寶石基板之蝕刻選擇比分別為 1:2 與 1:10。
在奈米壓印技術製作圖案化藍寶石基板方面,以高分子材料作為蝕刻遮罩進行蝕刻製程,圓柱形的高分子蝕刻遮罩的直徑為350 nm、間距280 nm,在上述相同的蝕刻製程條件下,高分子蝕刻遮罩對藍寶石基板之蝕刻選擇比分別為1:0.5,蝕刻製程中可藉由過蝕刻的方式,將結構側壁垂直度由135
zh_TW
dc.description.abstractIn this research, the pattern sapphire substrate was etched by using inductively coupled plasma reactive ion etching (ICP-RIE) method with four patterned masks which produced by different techniques of Nanosphere lithography technology, nanoimprint technology, thermal lithography technology of phase change material, and dual-layer photoresist complementary lithography (DPCL) technology. In Nanosphere lithography technology and nanoimprint technology, metal and polymer materials were used as etching mask to proceed dry etching process, respectively. In thermal lithography technology of phase change material, the etching mask was made by using the oxides of four metal elements of GSSO(Ge, Sb, Se, O, GSSO). In the DPCL technology, organic and inorganic materials were combined to make etching masks. After the etching processes of sub-micron scale patterned sapphire substrates (PSS) were completed, the testing LED dies with sub-micron scale pattern were evaluated the LED luminous efficiency after the epitaxy process.
In the aspect of PSS fabricated by Nanosphere lithography technology, the nanosphere diameter was controlled between 330 nm and 600 nm by adjusting the oxygen plasma etching time. Then the nickel and chromium metal masks with different pitches were made by electron gun evaporation technology and lift-off method. The diameter of circular pattern in metal etch mask can be controlled at 330-510 nm, and the pitch spacing was 75-170 nm. Under suitable etching parameters, the etching selection ratios of chromium and nickel masks versus sapphire substrates are 1:2 and 1:10, respectively.
In the aspect of PSS fabricated by nanoimprint technology, the cylindrical pattern of polymer with diameter of 350 nm and spacing of 280 nm was used as the etching mask. With the same etching process mentioned above, the etching selection ratio of polymer mask versus sapphire substrates is 1:0.5. The vertical sidewall angle can be adjusted from 135
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:47:42Z (GMT). No. of bitstreams: 1
ntu-103-D95525003-1.pdf: 6371423 bytes, checksum: f91dcc7f0f6c73e56b9fa9b76b436a68 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents總 目 錄
摘 要 i
Abstract iii
總 目 錄 vii
圖 目 錄 x
表 目 錄 xv
符 號 表 xvii
第一章 緒論 1
1.1 背景與研究動機 1
1.2 文獻回顧 4
1.2.1 圖案化藍寶石基板之發光二極體 4
1.2.2 圖案化蝕刻遮罩製作方法 6
1.2.3 圖案化藍寶石基板蝕刻製程與薄膜磊晶 7
1.3 論文架構 16
第二章 氮化鎵發光二極體之相關原理 17
2.1 發光二極體之原理 17
2.2 發光二極體之發光效率 24
2.2.1 量子效率 24
2.2.2 功率轉換效率 25
2.3 光損失機制 26
2.3.1 Fresnel效應所造成的損失 26
2.3.2 全反射角效應所造成的損失 27
2.3.3 電流分佈不均所造成之損失 29
第三章 奈米球微影與奈米壓印之圖案化應用 35
3.1 前言 35
3.2 文獻回顧 35
3.3 實驗設計 40
3.4 結果與討論 46
3.4.1 金屬與高分子蝕刻遮罩製作 46
3.4.2 電漿蝕刻參數探討 47
3.4.3 蝕刻遮罩應用於圖案化藍寶石基板蝕刻 49
3.5 小結 53
第四章 相變化材料GSSO薄膜之圖案化應用 61
4.1 前言 61
4.2 文獻回顧 61
4.3 實驗設計 68
4.4 結果與討論 75
4.4.1 GSSO薄膜光學性質量測 75
4.4.2 GSSO薄膜圖案化參數探討 76
4.4.3 GSSO薄膜成分與結晶性分析 78
4.4.4 GSSO蝕刻遮罩應用於圖案化藍寶石基板蝕刻 80
4.5 小結 81
第五章 雙層互補性光阻微影技術 99
5.1 前言 99
5.2 實驗設計 100
5.3 結果與討論 106
5.3.1 蝕刻遮罩增厚層材料選擇與測試 106
5.3.2 雙層互補性光阻應用於圖案化藍寶石基板蝕刻 108
5.3.3 圖案化藍寶石基板應用於氮化鎵磊晶 109
5.4 小結 112
第六章 總論與展望 123
6.1 總論 123
6.2 未來展望 125
參考文獻 127

圖 目 錄
圖1-1 全球LED市場銷售金額統計圖 3
圖1-2 典型的InGaN/GaN多層量子井之LED結構示意圖 12
圖1-3 圖案化藍寶石基板磊晶GaN薄膜之剖面圖 12
圖1-4 以不同混合比例氣體蝕刻藍寶石基板之結果:(a)100 % BCl3、(b)20 % Cl2 / 80 % BCl3、(c)20 % HCl / 80 % BCl3、(d)10 % HBr / 90 % BCl3 13
圖1-5 以氯氣為基礎蝕刻氣體,混合不同氣體蝕刻藍寶石基板之結果:(a) CH2Cl2 / ( CH2Cl2+ Cl2)、(b)BCl3 / ( BCl3+ Cl2) 13
圖1-6 以不同氣體蝕刻藍寶石基板之結果:(a)NF3氣體、(b)C2F6氣體 14
圖1-7 GaN磊晶層分別成長於不同基板之TEM圖:(a)PSS、(b)NSS 14
圖1-8 不同尺寸結構之LED輸出功率比較圖:(a)Chen團隊、(b)Gao團隊 14
圖1-9 不同結構對氮化鎵磊晶品質之影響:(a)凸狀、(b)凹洞之磊晶情況的SEM圖;(c)凸狀、(d)凹洞磊晶缺陷示意圖 15
圖2-1 典型的LED結構 21
圖2-2 晶格不匹配之異質結構示意圖 21
圖2-3 電子與電洞之非輻射複合 22
圖2-4 LED在不同偏壓條件下的pn接面及能帶圖:(a)零偏壓、(b)順向偏壓 22
圖2-5 直接能隙發光二極體能帶圖:(a)直接能隙、(b)間接能隙 23
圖2-6 Fresnel損失示意圖 31
圖2-7 全反射所造成之損失示意圖 31
圖2-8 計算光子逃脫角錐比例:(a)定義逃脫角θc、(b)圓頂錐之表面積積分、(c)圓頂錐之光投射表面積 32
圖2-9 線性直條紋電極之電流分佈圖 33
圖2-10 使用電流堵塞層(CBL)方式降低電流密度分佈示意圖:(a)低電流密度、(b)高電流密度、(c)使用電流堵塞層之電流密度 34
圖2-11 增加光子逃脫機率方式示意圖:(a)反射方式、(b)穿透方式 34
圖3-1 兩種不同作用力的奈米球自組裝反應機制:(a)毛細作用力、(b)水流作用力 38
圖3-2 奈米球溶液對流自組裝裝置示意圖 38
圖3-3 氣、液界面法製備單層奈米球之示意圖 39
圖3-4 奈米圓洞陣列結構製作之流程圖 44
圖3-5 奈米圓錐陣列結構製作之流程圖 45
圖3-6 PS奈米球模板之SEM圖:(a)呈現六角蜂窩狀最密堆積圖案、(b)奈米球經氧電漿縮減直徑後的結果、(c)圖(b)的剖面圖 56
圖3-7 PS奈米球模板製鍍100 nm 鉻金屬之SEM圖:(a)剖面圖、(b)側視圖、(c)六角蜂窩狀鉻金屬遮罩 56
圖3-8 奈米壓印技術製作之高分子結構蝕刻遮罩的SEM圖:(a)側視圖、(b)剖面圖 57
圖3-9 (a)ICP power功率、DC bias 電壓與蝕刻速率之關係圖、(b)ICP power 功率與蝕刻表面粗糙度之關係圖 57
圖3-10 (a)RF power 功率、DC bias 電壓與蝕刻速率之關係圖、(b)RF power 功率與蝕刻表面粗糙度之關係圖 57
圖3-11 以鉻金屬遮罩與不同混合氣體蝕刻藍寶石基板之結果:(a)、(b)Cl2 / Ar;(c)、(d)BCl3 / Ar 58
圖3-12 以鉻金屬遮罩與不同製程壓力蝕刻藍寶石基板之結果:(a)、(b)30 mTorr;(c)、(d)60 mTorr 58
圖3-13 電漿蝕刻製程後之藍寶石基板表面的EDS能譜圖 59
圖3-14 以鎳金屬遮罩蝕刻製作不同間距結構的SEM剖面圖:(a)89 nm、(b)139 nm、(c)167 nm、(d)圖(c)之側視圖 59
圖3-15 不同製程壓力蝕刻420秒之圓錐結構陣列的SEM側視與剖面圖:(a)、(b)30 mTorr;(c)、(d)60 mTorr 60
圖3-16 在製程壓力60 mTorr下不同蝕刻時間之圓錐結構陣列的SEM側視與剖面圖:(a)、(b)300秒;(c)、(d)360秒 60
圖4-1 無機與有機光阻微影區域之比較圖 65
圖4-2 以PTM技術刻製BD碟片之SEM圖 65
圖4-3 以波長405 nm雷射刻製TeOx-based薄膜之SEM圖 66
圖4-4 以波長405 nm雷射刻製GeSbTe薄膜之SEM圖 66
圖4-5 以波長405 nm雷射刻製(ZnS)80(SiO2)20薄膜之SEM圖 67
圖4-6 GSSO薄膜沉積、圖案化與藍寶石基板之為結構製作流程圖 74
圖4-7 不同氧氣流量對GSSO薄膜之光學特性關係圖:(a)穿透率、(b)反射率 87
圖4-8 不同氧氣流量對GSSO薄膜之光學特性關係圖:(a)折射率、(b)消光係數 88
圖4-9 不同成膜的氧氣流量與不同雷射功率下,寫入圓形圖案的GSSO薄膜之幾何特性關係圖:(a)結構半高寬直徑、(b)寫入結構深度 89
圖4-10 以通入不同氧氣流量與不同雷射功率寫入直條紋圖案,GSSO薄膜之幾何特性關係圖:(a)結構半高寬線徑、(b)寫入結構深度 90
圖4-11 不同氧氣流量下,以不同雷射功率寫入之圓形圖案的SEM:(a-c)11.5 SCCM、(d-f)12 SCCM 91
圖4-12 不同氧氣流量下,以不同雷射功率寫入之直條紋圖案的SEM:(a-c)11.5 SCCM、(d-f)12 SCCM 92
圖4-13 以不同雷射功率條件寫入的圓形圖案之SEM圖 93
圖4-14 不同升溫速率之DSC量測曲線圖:(a)金屬氧化物、(b)相變化合金 94
圖4-15 金屬氧化物與相變化合金之Kissinger圖 95
圖4-16 熱微影概念應用於不同薄膜結晶特性之示意圖 95
圖4-17 GSSO薄膜之XRD量測圖 96
圖4-18 經雷射直寫並顯影後無機光阻呈現碗形之微結構 97
圖4-19 以圖4-17作為蝕刻遮罩經ICP-RIE機蝕刻後所獲得之微結構 98
圖5-1 以雙層互補性光阻製備圖案化藍寶石基板之流程圖 105
圖5-2 正光阻為蝕刻增厚層其表面呈現不平整波浪狀之SEM圖 115
圖5-3 不同蝕刻時間之雙層光阻結構的SEM剖面圖與側視圖:(a)、(b)60 sec;(c)、(d)120 sec;(e)、(f)180 sec 115
圖5-4 氧電漿對雙層光阻進行開孔蝕刻製程之示意圖:(a)有機光阻尚未蝕刻到底,與(b)過蝕刻造成有機光阻底部細化現象 116
圖5-5 ICP-RIE蝕刻藍寶石基板後的(a)破碎結構、(b)類閃電形狀結構之SEM圖 117
圖5-6 圓洞圖案之間距與直徑均為350 nm之蝕刻遮罩:(a)全景圖、(b)局部放大圖 117
圖5-7 (a)、(b)不具上平台結構;(c)、(d)具上平台結構之SEM俯視圖與剖面圖 118
圖5-8 BCl3/Ar電漿進行藍寶石蝕刻時對雙層光阻形貌之影響示意圖 119
圖5-9 大面積圖案化藍寶石基板之照片圖:(a)2吋、(b)4吋 120
圖5-10 不同間距與深度的圖案化藍寶石基板,成長厚度2.5
dc.language.isozh-TW
dc.subject雙層光阻互補性微影zh_TW
dc.subject蝕刻遮罩zh_TW
dc.subject圖案化藍寶石基板zh_TW
dc.subject奈米球微影zh_TW
dc.subject奈米壓印zh_TW
dc.subject相變化材料zh_TW
dc.subject感應耦合電漿反應離子蝕刻zh_TW
dc.subjectDPCLen
dc.subjectphase change materiaen
dc.subjectetching masken
dc.subjectNSLen
dc.subjectNILen
dc.subjectpattern sapphire substrateen
dc.subjectICP-RIEen
dc.title次微米微影於藍寶石基板圖案化之研究zh_TW
dc.titlePatterning of Sapphire Substrate Using Submicron Lithography Techniquesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊啟榮,蔣東堯,蕭銘華,郭鴻飛,李坤彥
dc.subject.keyword圖案化藍寶石基板,雙層光阻互補性微影,感應耦合電漿反應離子蝕刻,相變化材料,蝕刻遮罩,奈米球微影,奈米壓印,zh_TW
dc.subject.keywordpattern sapphire substrate,DPCL,ICP-RIE,phase change materia,etching mask,NSL,NIL,en
dc.relation.page142
dc.rights.note有償授權
dc.date.accepted2014-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved