Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑(Chun-Chieh Wu)
dc.contributor.authorTing-Chen Chenen
dc.contributor.author陳亭蓁zh_TW
dc.date.accessioned2021-06-16T06:46:32Z-
dc.date.available2014-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-25
dc.identifier.citation王時鼎,1970:臺灣區域冬半年連續三至六天惡劣天氣型研究。氣象學報,16,18-31。
李清勝、羅英哲、張龍耀, 2007:琳恩颱風(1987)與東北季風交互作用產生強降水之研究。大氣科學, 35, 13‐34頁。
連國淵,2009:颱風路徑與結構同化研究¬—系集卡爾曼濾波器。國立台灣大學大氣科學研究所碩士論文,87頁。
陳萬金、蔡明達、劉振榮及張茂興,2005:利用TRMM 微波資料進行台灣陸上降雨反演之研究-散射指數法。大氣科學,33,277-300頁。
黃椿喜,2000:從位渦觀點探討模式初始化過程對颱風路徑模擬之影響。國立台灣大學大氣科學研究所碩士論文,81頁。
楊忠權,2009:西北太平洋地區熱帶氣旋路徑特徵探討。國立台灣大學大氣科學研究所博士論文,113頁。
Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9, 265–278.
Carr, L. E., and R. L. Elsberry, 1990: Observational Evidence for Predictions of Tropical Cyclone Propagation Relative to Environmental Steering. J. Atmos. Sci., 47, 542–546.
——, and ——, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265–289.
Chan, J. C. L., and W. M. Gray, 1982: Tropical Cyclone Movement and Surrounding Flow Relationships. Mon. Wea. Rev., 110, 1354–1374.
Chan, J. C. L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship between Potential Vorticity Tendency and Tropical Cyclone Motion. J. Atmos. Sci., 59, 1317–1336.
Charney, J. G., 1955: The use of primitive equations of motion in numerical prediction. Tellus, 7, 22–26.
Chien, F. -C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.
——, Y.-C. Liu, and C.-S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteor. Soc. Japan, 86, 17–41.
Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 200 pp. [Available online at http://cstar.cestm.albany.edu/CAP_Projects/Project10/index.htm.]
Davis, C. A., 1992a: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.
——, 1992b: A Potential-Vorticity Diagnosis of the importance of initial Structure and Condensational Heating in Observed Extratropical Cyclogenesis. Mon. Wea. Rev., 120, 2409–2428.
——, and K. A. Emanuel, 1991: Potential Vorticity Diagnostics of Cyclogenesis. Mon. Wea. Rev., 119, 1929–1953.
Elsberry, R. L., 1995: Tropical cyclone motion. Chap. 4, Global Perspectives on Tropical Cyclones. Tech. Doc. WMO/TD-No. 693, World Meteorological Organization, Geneva, Switzerland, 106-197.
——, 2007: Advances in tropical cyclone motion prediction and recommendations for the future. WMO Bull., 56, 131-135.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162.
——, 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367.
Fang, X., and Y.-H. Kuo, 2013: Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Wea. Rev., 141, 3908–3932.
Franklin, J. L., 1990: Dropwindsonde Observations of the Environmental Flow of Hurricane Josephine (1984): Relationships to Vortex Motion. Mon. Wea. Rev., 118, 2732–2744.
Galarneau, T. J., and C. A. Davis, 2013: Diagnosing Forecast Errors in Tropical Cyclone Motion. Mon. Wea. Rev., 141, 405–430.
——, L. F. Bosart, and R.S. Schumacher, 2010: Predecessor Rain Events ahead of Tropical Cyclones. Mon. Wea. Rev., 138, 3272–3297.
Hoskins B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. Met. Soc. 111, 877–946.
Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301–316.
Kieu, C. Q., N. M. Truong, H. T. Mai, and T. Ngo-Duc, 2012: Sensitivity of the Track and Intensity Forecasts of Typhoon Megi (2010) to Satellite-Derived Atmospheric Motion Vectors with the Ensemble Kalman Filter. J. Atmos. Oceanic Technol., 29, 1794–1810.
Lee, C.-S., Y.-C. Liu, and F.-C. Chien, 2008: The Secondary Low and Heavy Rainfall Associated with Typhoon Mindulle (2004). Mon. Wea. Rev., 136, 1260–1283.
Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some Common Ingredients for Heavy Orographic Rainfall. Wea. Forecasting, 16, 633–660.
Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective. Mon. Wea. Rev., 132, 1645–1660.
Luo, Z. X., N. E. Davidson, F. Ping, and W. Zhou, 2011: Multiple-Scale Interactions Affecting Tropical Cyclone Track Change. Advances in Mechanical Engineering, 2011, 1-9.
Marchok, T., R. Rogers, and R. Tuleya, 2007: Validation Schemes for Tropical Cyclone Quantitative Precipitation Forecasts: Evaluation of Operational Models for U.S. Landfalling Cases. Wea. Forecasting, 22, 726–746.
Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfectmodel experiments. Mon. Wea. Rev., 135, 1403–1423.
Peng, S., Y.-K. Qian, Z. Lai, S. Hao, S. Chen, H. Xu, D. Wang, X. Xu, J. C. L. Chan, H. Zhou, and D. Liu, 2014: On the mechanisms of the recurvature of super typhoon Megi. Scientific Reports, 4:4451.
Raymond, D. J., 1992: Nonlinear balance and potential vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 987-1015
——, and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067-3077.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.
Shapiro, L. J., 1996: The motion of Hurricane Gloria: A Potential Vorticity Diagnosis. Mon. Wea. Rev., 124, 2497–2508.
Shi, W., J. Fei, X. Huang, X. Cheng, J. Ding, and Y. He, 2014: A Numerical Study on the Combined Effect of Midlatitude and Low Latitude Systems on the Abrupt Track Deflection of Typhoon Megi (2010). Mon. Wea. Rev., in press.
Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The Role of Typhoon Songda (2004) in Producing Distantly Located Heavy Rainfall in Japan. Mon. Wea. Rev., 137, 3699–3716.
Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of Asymmetric Latent Heating on Typhoon Movement Crossing Taiwan: The Case of Morakot (2009) with Extreme Rainfall. J. Atmos. Sci., 69, 3172–3196.
Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 1102–1120.
Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62-76.
——, and ——, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 69-92.
——, and——, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93-109.
——, and Y.-H. Kuo, 1999: Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
——, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall Simulation Associated with Typhoon Herb (1996) near Taiwan. Part I: The Topographic Effect. Wea. Forecasting, 17, 1001–1015.
——, T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Typhoon Bopha (2000) and its interaction with Typhoon Saomai (2000). Mon. Wea. Rev.,131, 1289-1300.
——, ——, and K.-H. Chou, 2004: Potential vorticity diagnosis of the key factors affecting the motion of Typhoon Sinlaku (2002). Mon. Wea. Rev., 132, 2084-2093.
——, K. K. W. Cheung, and Y.-Y. Lo, 2009: Numerical Study of the Rainfall Event due to the Interaction of Typhoon Babs (1998) and the Northeasterly Monsoon. Mon. Wea. Rev., 137, 2049–2064.
——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of Tropical Cyclone Track and Structure Based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806–3822.
——, S.-G. Chen, S.-C. Lin, T.-H. Yen, and T.-C. Chen, 2013: Uncertainty and Predictability of Tropical Cyclone Rainfall Based on Ensemble Simulations of Typhoon Sinlaku (2008). Mon. Wea. Rev., 141, 3517–3538.
Qian, C., F. Zhang, B. W. Green, J. Zhang, and X. Zhou, 2013: Probabilistic Evaluation of the Dynamics and Prediction of Supertyphoon Megi (2010). Wea. Forecasting, 28, 1562–1577.
Yang, M.- J., D.- L. Zhang, and H.- L. Huang, 2008b: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 3095-3115.
——, S. A. Braun, and D.-S. Chen, 2011: Water Budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 3809–3828.
Yen, T.-H., C.-C. Wu, and G.-Y. Lien, 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Oceanic Sci., 22, 647–660.
Yu, C.-K., and L.-W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497-521.
——, and ——, 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 2894-2915.
——, and ——, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., in press.
Zhang, Z., and T. N. Krishnamurti, 1997: Ensemble Forecasting of Hurricane Tracks. Bull. Amer. Meteor. Soc., 78, 2785–2795.
Zhang, F., and C. Snyder, 2007: Ensemble-based data assimilation. Bull. Amer. Meteor. Soc., 88, 565–568.
——, Z. Meng, and A. Aksoy, 2006: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736.
——, Y. Weng, Y.-H. Kuo, J. S. Whitaker, and B. Xie, 2010: Predicting Typhoon Morakot’s Catastrophic Rainfall with a Convection-Permitting Mesoscale Ensemble System. Wea. Forecasting, 25, 1816–1825.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57448-
dc.description.abstract當梅姬颱風(2010)通過呂宋島後,距離台灣仍有一段距離,颱風於南海地區由原本的向西移動突然往北轉向,受到颱風外圍環流與東北季風影響,台灣東北部以及其外海地區於10月19日到23日降下豪雨。由於過去許多研究顯示颱風降雨預報技術高度地受到路徑預報準確度之影響,本研究利用Advanced Research WRF模式結合ensemble Kalman filter(EnKF)資料同化技術及系集模擬,探討梅姬北轉之路徑不確定性,以及梅姬對於台灣地區所造成之遠距降雨效應。
片段位渦診斷以及駛流分析結果顯示,副熱帶高壓之東退,加上季風槽影響範圍往西縮減,前者位於颱風東北側,後者位於颱風西南側,兩者皆提供利於颱風北轉之綜觀環境。此外,由熱帶地區逐漸發展且往北延伸至颱風東側之反氣旋系統,也提供颱風顯著的南風駛流。颱風北轉後一天,中緯度槽線系統也開始扮演增加颱風往北分量之角色。造成系集成員路徑差異之因素來自於模擬副熱帶高壓分裂時機之不確定性、反氣旋系統和季風槽勢力範圍變化,以及中緯度槽線系統之強度差異等,使得颱風駛流有所差異。
藉由公正預兆得分檢驗定量降水模擬技術,發現梅姬颱風所伴隨的遠距強降雨事件中,定量降雨模擬之優劣與路徑平均誤差無顯著相關,並非如物理直覺一般簡單,重點是還需考慮東北風勢力範圍、颱風環流大小、潛在降雨區域盛行風向及該區山脈走向、坡度等影響。分析結果顯示,颱風外圍環流與東北季風之水氣通量輻合提供一個相對潮濕的潛在發生降雨環境,但並不是造成台灣東北角陸地區域產生強降雨之主因。盛行風將水氣從外海地區平流至宜蘭平原南側較陡峭坡度之山區,透過強烈的地形抬升作用,在迎風面近地表產生輻合並伴隨強烈的垂直運動,進而產生強降雨。地形移除實驗也顯示,海面上之降雨主要為水氣通量輻合作用所致,而宜蘭地區的降雨則必須透過地形抬升之動力過程而增強。
藉由系集模擬分析,本研究一方面探討造成颱風北轉之成因,同時透過系集模擬檢驗在颱風遠距影響下,造成台灣東北部降雨事件的不確定性以及強降雨產生機制。此研究探討了包括颱風、季風、地形以及彼此微妙之交互作用與可能的不確定性,未來可提供在東北季風盛行季,颱風所伴隨遠距降雨預報之參考。
zh_TW
dc.description.abstractWhen Typhoon Megi (2010) was still distant from Taiwan, located to the west of Luzon islands, it took a sudden track change from westward to northward over the South China Sea, leading to heavy rainfall in northeastern Taiwan and the adjacent seas during 0000 UTC 19-23 October. Since previous studies often highlight the accuracy of the Tropical Cyclone (TC) track as a key factor for accurate forecast of typhoon-related rainfall, the uncertainties of 1) the sudden recurvature of Megi, and 2) precipitation over Taiwan under Megi’s remote effect are both examined with ensemble simulations based on ensemble Kalman filter data assimilation system and the Advanced Research WRF (ARW) model in this study.
Based on the piecewise PV diagnosis and steering flow analysis, our results show that the eastward retreat of subtropical high (SH) and the westward retreat of monsoon trough (MT), the former located to the northeast and the latter located to the southwest of Megi, provide a favorable synoptic environment for Megi’s sudden recurvature. In addition, an anticyclone (AC) developing over the tropical area, expanding northward to the east rear of Megi, also contributes northward steering flow. After Megi’s sudden poleward turn, the approaching mid-latitude upper-level trough (UTR) helps enhance Megi’s northward movement. The diversity of simulated track among different members is affected by the uncertainty in simulating the expanding areas of AC and MT, the timing of a break of the band-like subtropical high pressure system, and the strength of UTR, all of which can further lead to different steering flows.
The quantitative evaluation of precipitation forecast based on the equitable threat score (ETS) shows that the TC track is not the dominant factor affecting the performance of rainfall forecast in this remote rainfall event. The uncertainty of remote rainfall simulation is affected by the area covered by the northeasterly monsoon, TC size, the direction of prevailing wind, mountain orientation, and the slopes of windward mountains. The results show that the low-level moisture convergence of northeasterly monsoon and the outer circulation of TC provides a moisture-abundant environment, which is favorable for the occurrence of rainfall. Then, it is the prevailing wind that further advects the moisture inland, and causes strong low-level convergence and vertical motion over the steep mountain areas at the south side of Yilan plain, where stronger orographic lifting results in heavy precipitation.
Based on ensemble simulations, our study not only investigates the dominant factors leading to Megi’s sharp recurvature but also evaluates the uncertainty in TC’s remote effect on precipitation and associated detailed mechanism, which are relatively limited in other studies. Our results also provide new insight into the precipitation under the typhoon–monsoon–terrain interaction, and can be applied in assessment of numerical products for real-time forecast, especially for the remote rainfall events occurring in northeasterly monsoon season.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:46:32Z (GMT). No. of bitstreams: 1
ntu-103-R01229003-1.pdf: 34952949 bytes, checksum: 6dbd9fda23b3427a4081e143524aeb5b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1文獻回顧 1
1.1.1颱風降雨相關研究 1
1.1.2遠距降雨事件 3
1.1.3颱風路徑模擬 5
1.1.4位渦診斷回顧 7
1.2研究個案之選取動機 8
1.3梅姬颱風路徑轉向分析 8
1.4研究目的 10
第二章 梅姬颱風個案介紹 12
2.1梅姬颱風概述牆 12
2.2梅姬颱風造成之台灣地區降雨事件 12
2.3作業單位之路徑預報 14
第三章 研究方法 16
3.1數值模式與系集卡爾曼濾波器 16
3.2實驗設計 16
3.3分析方法 17
3.3.1位渦反演方法與理論 18
3.3.2片段位渦反演 19
第四章 梅姬路徑轉向之不確定性 22
4.1模擬路徑與強度 22
4.2路徑轉向分析 23
4.2.1颱風大小、強度及移速 23
4.2.2大尺度環流系統 24
4.2.2.1副熱帶高壓系統 25
4.2.2.2中緯度槽線系統與西太平洋洋面之低壓系統 26
4.2.3駛流分析 26
4.2.3.1深層平均流場 26
4.2.3.2位渦診斷—總位渦擾動反演之深層平均流場 30
4.2.3.3位渦診斷—影響北轉組代表成員北轉之環流系統 32
4.2.3.4位渦診斷—與西行組代表成員之比較 34
4.3小結 35
4.4討論 37
第五章 梅姬對台灣地區之降雨影響 39
5.1系集降雨模擬結果 39
5.2颱風環流扮演之角色 41
5.3西行組之降雨不確定性 42
5.4北轉組之降雨不確定性 44
5.5遠距強降水之降雨機制與不確定性影響因子 46
5.6 地形抬升作用 49
5.6.1 地形移除實驗 50
5.6.1.1 降雨模擬表現最佳之代表組 50
5.6.1.2 路徑誤差小、迎風面高估降雨代表組 51
5.7小結 54
第六章 總結 56
6.1影響路徑不確定性因子 56
6.2影響遠距降雨模擬不確定性因子 57
6.3未來展望 59
參考文獻 61
附表 68
附圖 69
dc.language.isozh-TW
dc.subject梅姬颱風zh_TW
dc.subject降雨zh_TW
dc.subject颱風遠距效應zh_TW
dc.subject路徑突然轉向zh_TW
dc.subject系集模擬zh_TW
dc.subjectsudden track changeen
dc.subjectrainfallen
dc.subjectTC’s remote effecten
dc.subjectTyphoon Megien
dc.subjectensemble simulationsen
dc.title梅姬颱風(2010)轉向及對台灣降雨的遠距影響-系集模擬與不確定性探討zh_TW
dc.titleSudden Track Change of Typhoon Megi (2010) and Its Remote Effect on Rainfall over Taiwan - Evaluation of Uncertainty Based on Ensemble Simulationsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游政谷(Cheng-Ku Yu),楊明仁(Ming-Jen Yang)
dc.subject.keyword降雨,颱風遠距效應,路徑突然轉向,系集模擬,梅姬颱風,zh_TW
dc.subject.keywordrainfall,TC’s remote effect,sudden track change,ensemble simulations,Typhoon Megi,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
34.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved