Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57445
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許仁華(Jen-Hwa Hsu)
dc.contributor.authorChin-Lai Tsaien
dc.contributor.author蔡金來zh_TW
dc.date.accessioned2021-06-16T06:46:24Z-
dc.date.available2015-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-25
dc.identifier.citation[1] O. Hellwig, J. B. Kortright, K. Takano, and Eric E. Fullerton, Phys. Rev. B 62, 11694 (2000)
[2] S. Demirtas, M. R. Hossu, M. Arikan, A. R. Koymen, and M. B. Salamon, Phys. Rev. B 76, 2114430 (2007)
[3] Ying Zhang, M. J. Kramer, Debjani Banerjee, Ichiro Takeuchi, and J. Ping Liu, J. Appl. Phys. 110, 053914 (2011)
[4] Y. K. Takahashi, T. O. Seki, K. Hono, T. Shima, and K. Takanashi, J. Appl. Phys. 96, 475 (2004)
[5] D. Suess, T. Schrefl, S. Fahler, M. Kirschner, G. Hrkac, F. Dorfbauer, and J. Fidler, Appl. Phys. Lett. 87, 012504 (2005)
[6] D. Goll, A. Breitling, L. Gu, P. A. van Aken, and W. Sigle, J. Appl. Phys. 104, 083903 (2008)
[7] D. C. Crew, J. Kim, L. H. Lewis, K. Barmak, J. Magn. Magn. Matter. 233, 257 (2001)
[8] D. Suess, Appl. Phys. Lett. 89, 113105 (2006)
[9] C. L. Zha, R. K. Dumas, Y. Y. Fang, V. Bonanni, J. Nogues, and Johan Akerman, Appl. Phys. Lett. 97, 182504 (2010)
[10] 楊志信, 垂直磁紀錄原理, 台灣資訊儲存技術協會會刊2005年邀稿
[11] J.A. Katine, Eric E. Fullerton, J. Magn. Magn. Matter. 320, 1217 (2008)
[12] Yan Zhou, C. L. Zha, S. Bonetti, J. Persson, and Johan Akerman, Appl. Phys. Lett. 92, 262508 (2008)
[13] C. L. Zha, S. Bonetti, J. Persson, Yan Zhou, and Johan Akerman, J. Appl. Phys. 105, 07D116 (2009)
[14] O. Redon, B. Dieny, and B. Rodmacq, U.S. Patent No. 6532164 B2 (2003)
[15] K. J. Lee, O. Redon, and B. Dieny, Appl. Phys. Lett. 86, 022505 (2005)
[16] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M. C. Cyrille, O. Redon, and B. Deiny, Nat. Mater. 6, 447 (2007)
[17] T. N. Anh Nguyen, Y. Fang, V. Fallahi, N. Benatmane, S. M. Mohseni, Appl. Phys. Lett. 98, 172502 (2011)
[18] T.N. AnhNguyen, N.Benatmane, V.Fallahi, Yeyu Fang, S. M. Mohseni, R. K. Dumas, Johan Akerman, J. Magn. Magn. Matter. 324, 3929 (2012)
[19] William H. Rippard, Alina M. Deac, Matthew R. Pufall, Justin M. Shaw, Mark W. Keller, Stephen E. Russek, Gerrit E. W. Bauer, and Claudio Serpico, Phys. Rev. B 81, 014426 (2010)
[20] X. Zhu and J. G. Zhu, IEEE Trans. Magn. 42, 2670 (2006)
[21] W. Jin, Y. W. Liu, and H. Chen, IEEE Trans. Magn. 42, 2682 (2006)
[22] B. Lu and D. Weller, U.S. Patent No. US2007009766-A1 (11 January2007)
[23] J. P. Wang, W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy, and W. L. Song, Appl. Phys. Lett. 86, 142504 (2005)
[24] T. J. Klemmer and K. Pelhos, Appl. Phys. Lett. 88, 162507 (2006)
[25] C. L. Zha, B. Ma, Z. Z. Zhang, T. R. Gao, F. X. Gan, and Q. Y. Jin, Appl. Phys. Lett. 89, 022506 (2006)
[26] J. Y. Jeong, J. G. Kim, S. Y. Bae, and K. H. Shin, IEEE Trans. Magn. 37, 1268 (2001)
[27] C. L. Zha, R. K. Dumas, J. Persson, S. M. Mohseni, J. Nogues, and J. Akerman, IEEE Magn. Lett. 1, 2500104 (2010)
[28] C. L. Zha, J. Persson, S. Bonetti, Y. Y. Fang, and J. Akerman, Appl. Phys. Lett. 94, 163108 (2009)
[29] C. L. Zha, Y. Y. Fang, J. Nogues, and J. Akerman, J. Appl. Phys. 106, 053909 (2009)
[30] C. L. Zha and J. Akerman, IEEE Trans. Magn. 45, 3491 (2009)
[31] G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, M. Solzi, F. Albertini, F. Casoli, S. Fabbrici, and L. Pareti, Phys. Rev. B 73, 094406 (2006)
[32] S. S. Parkin, N. More, and K. P. Roche, Appl. Phys. Lett. 64, 2304 (1990)
[33] W. F. Egelhoff Jr., R. D. McMichael, C. L. Dennis, M. D. Stiles, A. J. Shapiro, B. B. Maranville, and C. J. Powell, Appl. Phys. Lett. 88, 162508 (2006)
[34] C-Y. Tsai, P. Saravanan, Jen-Hwa Hsu, C-Y. Kuo, K-F. Lin, J. Magn. Magn. Mater. 361, 7 (2014).
[35] B. D. Cullity, C. D. Graham, ‘‘Introduction to Magnetic Materials’’
[36] Mathias Getzlaff, ‘‘Fundamentals of Magnetism’’
[37] 陳世堃,磁性技術手冊第三章,中華民國磁性技術協會
[38] 林正雄、金重勳,磁性技術手冊第九章,中華民國磁性技術協會
[39] 許樹恩、吳泰伯,X光繞射原理與材料分析,中國材料科學學會
[40] G. R. Harp, D. Weller, T. A. Rabedeau, R. F. C. Farrow, and M. F. Toney, Phys. Rev. Lett. 71, 2493 (1993)
[41] E Gbhardt, W Koster ‘‘CoPt and FePt thin films for high density recording media’’ (1940)
[42] J. B. Newkirk, R. Smoluchowski, A. H. Geisler and D. L. Martin, J. Appl. Phys. 22, 290 (1951)
[43] S. Iwata, S. Yamashita, and S. Tsunashima, IEEE Trans. Magn., 33, 3670 (1997)
[44] J. C. A. Huang, A. C. Hsu, Y. H. Lee, T. H. Wu, and C. H. Lee, J. Appl. Phys. 85, 5977 (1999)
[45] H. Sato, T. Shimatsu, Y. Okazaki, H. Muraoka, H. Aoi, S. Okamoto, and O. Kitakami, J. Appl. Phys. 103, 07E114 (2008)
[46] L. Uba, S. Uba, O. Horpynyuk, V. N. Antonov, and A. N. Yaresko, J. Appl. Phys. 91, 775 (2002)
[47] H. Sato, T. Shimatsu, H. Kataoka, H. Aoi, S. Okamoto, and O. Kitakami, J. Appl. Phys. 105, 07B726 (2009)
[48] T. Shimatsu, H. Sato, K. Mitsuzuka, H. Kataoka, H. Aoi, S. Okamoto, and O. Kitakami, J. Appl. Phys. 105, 07C109 (2009)
[49] H. Kataoka, H. Sato, T. Shimatsu, S. Okamoto, O. Kitakami, and H. Aoi, J. Phys. Conference Series 200, 10 (2010)
[50] A. C. Sun, F. T. Yuan, J. H. Hsu, and H. Y. Lee, Scripta Mater. 61, 713 (2009)
[51] F. T. Yuan, A. C. Sun, and J. H. Hsu, Scripta Mater. 62, 762 (2010)
[52] Y. Yang, J. S. Chen, and G. M. Chow, J. Appl. Phys. 109, 07B744 (2011)
[53] F. T. Yuan, A. C. Sun, J. H. Hsu, C. S. Tan, P. C. Kuo, W. M. Liao, and H. Y. Lee, J. Appl. Phys. 109, 07B743 (2011)
[54] S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991)
[55] S. S. Parkin, Phys. Rev. Lett. 67, 3598 (1991)
[56] 梅瑞國,鐵鉑薄膜經快速熱退火處理後之結構、相變、優選方位與內應力之研究,大同大學材料工程研究所博士論文 (2011)
[57] 羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司 (2005)
[58] Heng Gong, Maithri Rao, David E. Laughlin, and David N. Lambeth, J. Appl. Phys. 85, 5750 (1999)
[59] L Neel, J. Phys. Rad. 17, 250 (1956)
[60] Yuan-Tsung Chen, Jiun-Yi Tseng, Tzer-Shin Sheu, Y.C. Lin, S.H. Lin, Thin Solid Films 544, 602 (2013)
[61] H. Katada, T. Shimatsu, I. Watanabe, H. Muraoka, Y. Sugita, and Y. Nakamura, IEEE Trans. Magn. 36, 2905 (2000)
[62] Jitendra Singh, Sanjeev K. Gupta, Arvind K. Singh, Prateek Kothari, R.K. Kotnala, J. Akhtar, J. Magn. Magn. Matter. 324, 999 (2012)
[63] Xiaobai Chen, Hong Qiua, Hao Qian, Ping Wu, Fengping Wang, Liqing Pan, Yue Tian, Vacuum 75, 217 (2004)
[64] H. Sato, and S. Shinozaki, Surf. Sci. 22, 229 (1970)
[65] G. Choe and S. Gupta, Appl. Phys. Lett. 70, 1766 (1997)
[66] J. G. Kim, K. H. Han, S. H. Song, and A. Reilly, Thin Solid Films 440, 54 (2003)
[67] M. R. Scheinfein, LLG Micromagnetics Simulator User’s Guide, http://llgmicro.home.mindspring.com/index.htm.
[68] G. Varvaro, F. Albertini, E. Agostinelli, F. Casoli, D. Fiorani, S. Laureti, P. Lupo, P. Ranzieri, B. Astinchap, and A. M. Testa, New J. Phys. 14, 073008 (2012)
[69] G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, M. Solzi, F. Albertini, F. Casoli, S. Fabbrici, and L. Pareti, Phys. Rev. B 73, 094406 (2006)
[70] M. D. Stiles and R. D. McMichael, Phys. Rev. B 63, 064405 (2001)
[71] T. Kosub, A. Bachmatiuk, D. Makarov, S. Baunack, V. Neu, A. Wolter, M. H. Rummeli, and O. G. Schmidt, J. Appl. Phys. 112, 123917 (2012)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57445-
dc.description.abstract我們在此研究課題使用L11-CoPt二元合金薄膜(具有垂直異向性的硬磁層)與NiFe薄膜(具有水平形狀異向性的軟磁層)形成的雙層膜結構上,探討磁交互耦合彈簧,並藉由軟磁與硬磁界面交換耦合造成傾斜的磁異向性中,改變界面交換耦合的形式可用來調整軟磁層磁化方向傾斜的程度,形成可調式傾斜角度磁化方向的薄膜系統。在實驗中所使用樣品皆使用磁性濺鍍的方法,並以玻璃為基板加上20奈米厚Pt底層作成。
為了掌握此研究課題要點,我們經由對L11-CoPt垂直硬磁層與NiFe軟磁層各自作完整製程與磁性研究,確定可以掌握其各層磁性薄膜特性後,開始進行以下三大方向來進行實驗:
(1) 改變NiFe的厚度,但不改變L11-CoPt的厚度。
(2) 改變L11-CoPt的製程溫度,但NiFe的製程溫度都控制在室溫。
(3) 在CoPt與NiFe間插入中間非磁性層(Pt或Ru)。
從以上三種方法我們證明出,1)可以調控磁矩的傾斜角度從小角度到75度的範圍;2)不同製程溫度的CoPt後與NiFe形成不同的界面交互耦合強度,造成NiFe層的磁矩顯現出不同的傾斜角度;3)透過Pt層除了可以得到急速隨Pt厚度增加變小的界面耦合強度外,NiFe磁傾斜角度很快增加成為顯現水平磁異向性;4)在Ru中可以得到界面耦合強度隨Ru厚度增加造成震盪的結果。磁交互耦合彈簧的研究證明可調式磁矩的L11-CoPt/NiFe雙層膜結構在未來可應用於三維磁感應器,或是需要傾斜式磁異向性極化層的電子自旋元件。
zh_TW
dc.description.abstractThe exchange spring behaviors and title magnetic anisotropy were studied on L11-CoPt/NiFe bilayer systems. In this investigation L11-CoPt alloy film and Ni81Fe19 ( Permalloy ) films were exploited for the hard-layer with out-of-plane (OOP) and for the soft-layer with in-plane (IP) anisotropy, respectively. Through adjusting the interlayer exchange coupling between hard-layer and soft-layer, the tunable tilted magnetic anisotropy of the soft layer can be obtained. All the films studied herein were prepared by magnetron sputtering using glass as substrates along with a seed Pt layer of 20 nm.
Before the L11 CoPt/NiFe bilayer systems were intensively investigated, the magnetic properties of bare L11 CoPt or NiFe layer were studied first.
Afterwards three different approaches as shown below were adopted to investigate the exchange spring behaviors of L11 CoPt/NiFe bilayer systems:
Varying the thickness of NiFe layer while keeping the thickness of L11 CoPt constant.
Varying the deposition temperature of L11-CoPt layer while depositng the NiFe layer always at room temperature..
Inserting a nonmagnetic layer by using either Pt or Ru between L11 CoPt and NiFe layers.
Our results reveal that the tilted magnetization angle of NiFe layer can be varied from 0° to 75°;Secondly, different processing temperature results in different interlayer coupling strength, casuing different magnetization tilted angle of NiFe layer; Third, the interlayer coupling strength decays rapidly as the thickness of Pt spacer is increased. The magnetization of NiFe is almost lying on the film plane when the thickness of Pt reachs 4 nm. Lastly, the two layer coupling strength as well as the tilted angle of NiFe layer oscillates with the thickness of Ru layer.
The above results demonstrate that the tunable tilted exchange springs can be realized with L11-type CoPt/NiFe bilayers. Furthermore, the possibilities of future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy polarizer are justified.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:46:24Z (GMT). No. of bitstreams: 1
ntu-103-R01222014-1.pdf: 8144883 bytes, checksum: 29d948c581823a65ac60491686c48197 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2研究動機 2
1-2-1 從水平異向性到垂直異向性的原因 2
1-2-2 傾斜式磁矩 3
1-2-3 固定式傾斜磁矩 6
1-2-4 可調式傾斜磁矩 10
1-2-5 L11-CoPt/NiFe可調式傾斜磁矩 20
1-2-6 本實驗用L11-CoPt/NiFe調控磁矩的研究方向 21
第二章 理論基礎與文獻回顧 22
2-1 基礎磁學 22
2-1-1 磁性物質簡介 22
2-1-2 磁異向性(Magnetic anisotropy) 25
2-1-3 軟磁材料 28
2-1-4 各種CoPt二元合金相介紹 30
2-1-5 RKKY耦合效應 39
第三章 實驗原理與方法 43
3-1 實驗介紹 44
3-1-1 實驗裝置 44
3-1-2 濺鍍原理 45
3-1-3 磁控濺鍍原理 46
3-2 實驗製程與流程 47
3-2-1 基板的清潔 47
3-2-2 薄膜製程與參數校正 47
3-3 分析儀器介紹 50
3-3-1 原子力顯微鏡 (AFM) 50
3-3-2 掃描式電子顯微鏡(SEM) 52
3-3-3 X光繞射分析儀(XRD) 54
3-3-4 磁光柯爾效應儀(MOKE) 56
3-3-5 振動樣品磁力計(VSM) 58
3-3-6 超導量子干涉儀(SQUID) 60
3-3-7 磁力顯微鏡(MFM) 62
第四章 結果與討論 63
4-1自發性單軸磁異向性的Ni-Fe薄膜 64
4-1-1 Ni-Fe薄膜樣品製程與結構 64
4-1-2外加偏壓場有無對Ni-Fe薄膜的影響討論 65
4-1-3底層Ta和外加偏壓場對Ni-Fe薄膜的影響討論 67
4-2 L11-CoPt/NiFe Exchange Spring中改變軟磁層NiFe厚度 71
4-2-1 改變軟磁層NiFe厚度的製程與結構 71
4-2-2 改變軟磁層NiFe厚度的實驗結果 71
4-2-3 微磁學模擬 76
4-3 L11-CoPt/NiFe Exchange Spring中改變硬磁層CoPt製程溫度 79
4-3-1 改變硬磁層CoPt製程溫度與結構 79
4-3-2 改變硬磁層CoPt製程溫度的實驗結果 80
4-3-3 改變硬磁層CoPt製程溫度的微磁學模擬結果 84
4-4 L11-CoPt /NiFe Exchange spring插入中間非磁性金屬阻隔層 88
4-4-1 L11-CoPt /NiFe Exchange spring插入中間非磁性金屬阻隔層的製程與結構 88
4-4-2 L11-CoPt /NiFe Exchange spring插入中間非磁性金屬阻隔層的實驗結果 89
4-4-3 L11-CoPt /NiFe Exchange spring插入中間非磁性金屬阻隔層的微磁學模擬 98
第五章 結論 99
參考文獻 101
dc.language.isozh-TW
dc.subject傾斜磁異向性zh_TW
dc.subject電子自旋元件zh_TW
dc.subject磁交互耦合彈簧zh_TW
dc.subject磁性濺鍍zh_TW
dc.subject界面交換耦合zh_TW
dc.subjectinterlayer couplingen
dc.subjecttunable tilted magnetic anisotropyen
dc.subjectspintronic devicesen
dc.subjectexchange springen
dc.subjectmagnetron sputteringen
dc.title可調式傾斜磁異向性探討zh_TW
dc.titleStudies on tunable tilted magnetic anisotropyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳仲卿(Jong-Ching Wu),李景明(Ching-Ming Lee)
dc.subject.keyword磁交互耦合彈簧,傾斜磁異向性,界面交換耦合,磁性濺鍍,電子自旋元件,zh_TW
dc.subject.keywordexchange spring,tunable tilted magnetic anisotropy,interlayer coupling,magnetron sputtering,spintronic devices,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
7.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved