請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57430完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁(Hsien-Yeh Chen) | |
| dc.contributor.author | Chiao-Tzu Su | en |
| dc.contributor.author | 蘇巧慈 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:45:47Z | - |
| dc.date.available | 2019-08-13 | |
| dc.date.copyright | 2014-08-13 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-26 | |
| dc.identifier.citation | [1] Chilkoti A. Biointerface science. MRS bulletin 2005;30:175.
[2] Castner D, Castner B, Ratner. Biomedical surface science: Foundations to frontiers. Surface science 2002;500:28-60. [3] Lehnert D, Wehrle Haller B, David C, Weiland U, Ballestrem C, Imhof B, et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. Journal of cell science 2004;117:41-52. [4] Stuart MAC, Huck J, Genzer M, Muller C, Ober M, Stamm G, et al. Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010;9:101-13. [5] Kuo W-H, Kuo M-J, Wang H-W, Chien T-C, Wei C, Lee W-B, et al. Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules 2011;12:4348-56. [6] Rodriguez Emmenegger C, Rodriguez Emmenegger Oe, Kylián M, Houska E, Brynda A, Artemenko J, et al. Substrate-Independent Approach for the Generation of Functional Protein Resistant Surfaces. Biomacromolecules 2011;12:1058-66. [7] McPherson T, McPherson H, Shim K, Park. Grafting of PEO to glass, nitinol, and pyrolytic carbon surfaces by ? irradiation. Journal of biomedical materials research 1997;38:289-302. [8] Banerjee I, Pangule RC, Kane RS. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials 2011;23:690-718. [9] Wood K, Chuang H, Batten R, Lynn D, Hammond P. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proceedings of the National Academy of Sciences of the United States of America 2006;103:10207-12. [10] Elkasabi YM, Lahann J, Krebsbach PH. Cellular transduction gradients via vapor-deposited polymer coatings. Biomaterials 2011;32:1809-15. [11] Bhatia S, Bhatia M, Cooney L, Shriver Lake T, Fare F, Ligler. Immobilization of acetylcholinesterase on solid surfaces: chemistry and activity studies. Sensors and actuators B, Chemical 1991;3:311-7. [12] Flounders AW, Flounders DL, Brandon AH, Bates. Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosensors & bioelectronics 1997;12:447-56. [13] Lahann J. Click Chemistry for Biotechnology and Materials Science: Wiley; 2009. [14] Fischer ME. Amine Coupling Through EDC/NHS: A Practical Approach. In: Mol NJ, Fischer MJE, editors. Surface Plasmon Resonance: Humana Press; 2010. p. 55-73. [15] Madler S, Bich C, Touboul D, Zenobi R. Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. Journal of Mass Spectrometry 2009;44:694-706. [16] Anne A, Blanc B, Moiroux J, Saveant JM. Facile Derivatization of Glassy Carbon Surfaces by N-Hydroxysuccinimide Esters in View of Attaching Biomolecules. Langmuir 1998;14:2368-71. [17] Shen W, Shen S, Boxer W, Knoll C, Frank. Polymer-Supported Lipid Bilayers on Benzophenone-Modified Substrates. Biomacromolecules 2001;2:70-9. [18] Chen H-Y, Chen J, Lahann. Fabrication of Discontinuous Surface Patterns within Microfluidic Channels Using Photodefinable Vapor-Based Polymer Coatings. Analytical chemistry 2005;77:6909-14. [19] Xia Y, Xia X-M, Zhao G, Whitesides. Pattern transfer: Self-assembled monolayers as ultrathin resists. Microelectronic engineering 1996;32:255-68. [20] Mosbach M, Mosbach H, Zimmermann T, Laurell J, Nilsson E, Csoregi W, et al. Picodroplet-deposition of enzymes on functionalized self-assembled monolayers as a basis for miniaturized multi-sensor structures. Biosensors & bioelectronics 2001;16:827-37. [21] Grzybowski BA, Grzybowski R, Haag N, Bowden GM, Whitesides. Generation of Micrometer-Sized Patterns for Microanalytical Applications Using a Laser Direct-Write Method and Microcontact Printing. Analytical chemistry 1998;70:4645-52. [22] Giordano B, Giordano E, Copeland J, Landers. Towards dynamic coating of glass microchip chambers for amplifying DNAvia the polymerase chain reaction. Electrophoresis 2001;22:334-40. [23] Roy D, Roy M, Semsarilar J, Guthrie S, Perrier. Cellulose modification by polymer grafting: a review. Chemical Society reviews 2009;38:2046. [24] Patten T, Patten K, Matyjaszewski. Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. Advanced materials 1998;10:901-15. [25] Hawker C, Hawker A, Bosman E, Harth. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical reviews 2001;101:3661-88. [26] Chiefari J, Chiefari YK, Chong F, Ercole J, Krstina J, Jeffery TPT, et al. Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998;31:5559-62. [27] Kotov NA, Kotov. Layer-by-layer self-assembly: The contribution of hydrophobic interactions. Nanostructured materials 1999;12:789-96. [28] Jiang C, Jiang VV, Tsukruk. Freestanding Nanostructures via Layer-by-Layer Assembly. Advanced materials 2006;18:829-40. [29] Sprang N, Sprang D, Theirich J, Engemann. Plasma and ion beam surface treatment of polyethylene. Surface & coatings technology 1995;74:689-95. [30] Hiruma H, Toida T, Hanawa H, Sakuragi Y, Suzuki. Ion beam modification of ePTFE for improving the blood compatibility. Surface & coatings technology 2011;206:905-10. [31] Chu P, Chu. Plasma-surface modification of biomaterials. Materials science & engineering R, Reports 2002;36:143-206. [32] Murthy S, Murthy B, Olsen K, Gleason. Effect of filament temperature on the chemical vapor deposition of fluorocarbon-organosilicon copolymers. Journal of applied polymer science 2004;91:2176-85. [33] Tenhaeff W, Tenhaeff K, Gleason. Initiated and Oxidative Chemical Vapor Deposition of Polymeric Thin Films: iCVD and oCVD. Advanced functional materials 2008;18:979-92. [34] Chen H-Y, Chen J, Lahann. Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir 2011;27:34-48. [35] Dygert NL, Dygert AP, Gies KE, Schriver RF, Haglund, Jr. Deposition of polyimide precursor by resonant infrared laser ablation. Applied physics A, Materials science & processing 2007;89:481-7. [36] Lee K-R, Lee Y-J, Yu S-H, Joo C-Y, Lee D, Choi J, et al. Poly(2,5-thienylene vinylene) in Nano Shapes by CVD Polymerization. Macromolecular rapid communications 2007;28:1057-61. [37] Gorham W, Gorham. A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of polymer science Part A-1 Polymer chemistry 1966;4:3027-39. [38] Kramer P, Kramer AK, Sharma EE, Hennecke H, Yasuda. Polymerization of para-xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C. Journal of polymer science Polymer chemistry edition 1984;22:475-91. [39] Wu PK, Wu GR, Yang L, You D, Mathur A, Cocoziello CI, et al. Deposition of High Purity Parylene- F Using Low Pressure Low Temperature Chemical Vapor Deposition. Journal of Electronic Materials 1997;26:949-53. [40] Shin Y, Shin K, Cho S, Lim S, Chung S-J, Park C, et al. PDMS-based micro PCR chip with Parylene coating. Journal of micromechanics and microengineering 2003;13:768-74. [41] Fortin JB, Lu TM. Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films: Springer; 2003. [42] Tan C, Tan H, Craighead. Surface Engineering and Patterning Using Parylene for Biological Applications. Materials 2010;3:1803-32. [43] Chen H-Y, McClelland AA, Chen Z, Lahann J. Solventless Adhesive Bonding Using Reactive Polymer Coatings. Analytical Chemistry 2008;80:4119-24. [44] Lahann J, Lahann M, Balcells H, Lu T, Rodon K, Jensen R, et al. Reactive Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices. Analytical chemistry 2003;75:2117-22. [45] Tsai M-Y, Tsai C-Y, Lin C-H, Gu S-T, Huang J, Yu H-Y, et al. Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications 2012;48:10969. [46] Chen H-Y, Lahann J. Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir 2010;27:34-48. [47] Zhang Q, Wei F. Advanced Hierarchical Nanostructured Materials: Wiley; 2014. [48] Hu W-W, Elkasabi Y, Chen H-Y, Zhang Y, Lahann J, Hollister SJ, et al. The use of reactive polymer coatings to facilitate gene delivery from poly (ɛ-caprolactone) scaffolds. Biomaterials 2009;30:5785-92. [49] Lahann J, Langer R. Surface-Initiated Ring-Opening Polymerization of ϵ-Caprolactone from a Patterned Poly(hydroxymethyl- p-xylylene). Macromolecular Rapid Communications 2001;22:968-71. [50] Thevenet S, Chen HY, Lahann J, Stellacci F. A Generic Approach Towards Nanostructured Surfaces Based on Supramolecular Nanostamping on Reactive Polymer Coatings. Advanced Materials 2007;19:4333-7. [51] Chen HY, McClelland AA, Chen Z, Lahann J. Solventless adhesive bonding using reactive polymer coatings. Analytical Chemistry 2008;80:4119-24. [52] Nandivada H, Chen H-Y, Lahann J. Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular Rapid Communications 2005;26:1794-9. [53] Chen H-Y, Lai JH, Jiang X, Lahann J. Substrate-Selective Chemical Vapor Deposition of Reactive Polymer Coatings. Advanced Materials 2008;20:3474-80. [54] Elkasabi Y, Nandivada H, Chen H-Y, Bhaskar S, D'Arcy J, Bondarenko L, et al. Partially Fluorinated Poly-p-xylylenes Synthesized by CVD Polymerization. Chemical Vapor Deposition 2009;15:142-9. [55] Chen HY, Lahann J. Vapor-Assisted Micropatterning in Replica Structures: A Solventless Approach towards Topologically and Chemically Designable Surfaces. Advanced Materials 2007;19:3801-8. [56] Chen H-Y, Hirtz M, Deng X, Laue T, Fuchs H, Lahann J. Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. Journal of the American Chemical Society 2010;132:18023-5. [57] Chen HY, Rouillard JM, Gulari E, Lahann J. Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences of the United States of America 2007;104:11173-8. [58] Chen H-Y, Lahann J. Fabrication of Discontinuous Surface Patterns within Microfluidic Channels Using Photodefinable Vapor-Based Polymer Coatings. Analytical Chemistry 2005;77:6909-14. [59] Wu M-G, Hsu H-L, Hsiao K-W, Hsieh C-C, Chen H-Y. Vapor-Deposited Parylene Photoresist: A Multipotent Approach toward Chemically and Topographically Defined Biointerfaces. Langmuir 2012;28:14313-22. [60] Lahann J, Langer R. Novel Poly(p-xylylenes): Thin Films with Tailored Chemical and Optical Properties. Macromolecules 2002;35:4380-6. [61] Lahann J, Lahann H, Hocker R, Langer. Synthesis of Amino[2.2]paracyclophanes-Beneficial Monomers for Bioactive Coating of Medical Implant Materials. Angewandte Chemie (International ed) 2001;40:726-8. [62] Ratner BD, Bryant SJ. BIOMATERIALS: Where We Have Been and Where We are Going. Annual Review of Biomedical Engineering 2004;6:41-75. [63] Krishnan S. Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry 2008;18:3405. [64] Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 1991;252:1164-7. [65] Dalsin J, Dalsin L, Lin S, Tosatti J, Voros M, Textor P, et al. Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired mPEG−DOPA. Langmuir 2005;21:640-6. [66] Papra A, Bernard D, Juncker N, Larsen B, Michel E, Delamarche. Microfluidic Networks Made of Poly(dimethylsiloxane), Si, and Au Coated with Polyethylene Glycol for Patterning Proteins onto Surfaces. Langmuir 2001;17:4090-5. [67] Herrwerth S, Herrwerth W, Eck S, Reinhardt M, Grunze. Factors that Determine the Protein Resistance of Oligoether Self-Assembled Monolayers − Internal Hydrophilicity, Terminal Hydrophilicity, and Lateral Packing Density. Journal of the American Chemical Society 2003;125:9359-66. [68] Suh KY, Suh R, Langer J, Lahann. A Novel Photodefinable Reactive Polymer Coating and Its Use for Microfabrication of Hydrogel Elements. Advanced materials 2004;16:1401-5. [69] Ito Y, Tada S. Bio-orthogonal and combinatorial approaches for the design of binding growth factors. Biomaterials 2013;34:7565-74. [70] Talbert JN, Goddard JM. Enzymes on material surfaces. Colloids and Surfaces B: Biointerfaces 2012;93:8-19. [71] Palacios-Cuesta M, Cortajarena AL, Garcia O, Rodriguez-Hernandez J. Versatile Functional Microstructured Polystyrene-Based Platforms for Protein Patterning and Recognition. Biomacromolecules 2013;14:3147-54. [72] Hermanson GT. Bioconjugate Techniques: Elsevier Science; 2013. [73] Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR methods and applications 1995;4:357-62. [74] Oswald B, Oswald L, Patsenker J, Duschl H, Szmacinski O, Wolfbeis E, et al. Synthesis, Spectral Properties, and Detection Limits of Reactive Squaraine Dyes, a New Class of Diode Laser Compatible Fluorescent Protein Labels. Bioconjugate chemistry 1999;10:925-31. [75] Brinkley M, Brinkley. A brief survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents. Bioconjugate chemistry 1992;3:2-13. [76] Shi L, Tong W, Su Z, Han T, Han J, Puri R, et al. Microarray scanner calibration curves: characteristics and implications. BMC bioinformatics 2005;6 Suppl 2:S11-S. [77] Li F, Li S, Zhou B, You L, Wu. Kinetic study on the UV-induced photopolymerization of epoxy acrylate/TiO2 nanocomposites by FTIR spectroscopy. Journal of applied polymer science 2006;99:3281-7. [78] Li F, Li S, Zhou B, You L, Wu. Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy. Journal of applied polymer science 2006;99:1429-36. [79] Encinas MV, Encinas JC, Scaiano. Reaction of benzophenone triplets with allylic hydrogens. Laser flash photolysis study. Journal of the American Chemical Society 1981;103:6393-7. [80] Taton K, Taton P, Guire. Photoreactive self-assembling polyethers for biomedical coatings. Colloids and surfaces B, Biointerfaces 2002;24:123-32. [81] Lin A, Lin V, Sastri G, Tesoro A, Reiser R, Eachus. On the crosslinking mechanism of benzophenone-containing polyimides. Macromolecules 1988;21:1165-9. [82] Lutz J-F, Lutz. Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of polymer science Part A, Polymer chemistry 2008;46:3459-70. [83] Briggs D. Surface Analysis of Polymers by XPS and Static SIMS: Cambridge University Press; 1998. [84] Pregibon D, Toner M, Doyle P. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007;315:1393-6. [85] Jaeger RC, Neudeck GW, Pierret RF. Introduction to Microelectronic Fabrication, 2002. Prentice Hall. [86] Marx K, Marx. Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution−Surface Interface. Biomacromolecules 2003;4:1099-120. [87] Sauerbrey G, Sauerbrey. Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. European physical journal A, Hadrons and nuclei 1959;155:206-22. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57430 | - |
| dc.description.abstract | 在生物界面領域,位向選擇性鍵結(site-specific conjugation)是眾所關注的議題,其中,在材料界面固定生物分子的應用,區域選擇性(regioselective)和正交化學反應 (biorthogonal chemistry)是常見重要的鍵結技術。首先,利用具有光催化性的苯甲醯基聚對二甲苯(poly[(4-benzoyl-p-xylylene)-co-(p-xylylene)],PPX-benzoyl),其光反應製程在搭配光罩(photomask)下,可以選擇固定分子於基材特定區域,進而形成幾何形狀(pattern)。在研究中,苯甲醯基聚對二甲苯鍍膜選擇性鍵結一系列抗結垢(anti-fouling)分子:聚乙二醇(poly(ethylene glycol),PEG,Mn=400)、聚乙二醇甲基醚丙烯酸甲酯(poly (ethylene glycol) methyl ether methacrylate,PEGMA,Mn=475)、葡萄聚醣(dextran)和乙醇胺(ethanolamine)。鍍膜的苯甲醯基(benzoyl group)在波長365 nm紫外光照射下,與碳氫鍵(-CH)或氨基(-NH)進行光交聯反應(photo-crosslinking),因其廣泛的反應性,不需要額外再替抗垢分子修飾官能基便能直接化學鍵結於表面上。藉由反射吸收式紅外光譜分析技術(infrared reflection absorption spectroscopy,IRRAS)和X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)進行改質後表面的特性分析。利用螢光蛋白質fibrinogen、bovine serum albumin(BSA)的吸附測試可以檢驗其改質過後的抗垢效果,此外,藉由石英晶體微天平(quartz crystal microbalance,QCM)得到改質PEG、PEGMA、dextran和ethanolamine表面吸附fibrinogen的量值分別為: 32.8 ± 4.9ng cm-2、5.5 ± 3.9ng cm-2、21.4 ± 4.5ng cm-2和16.9 ± 3.4ng cm-2,證明其抗垢效果。最後,苯甲醯基聚對二甲苯區域選擇性的改質技術,藉由投影技術(microscopic patterning)延伸應用在立體的人工心臟支架上,其抗蛋白質效果也利用螢光蛋白質吸附測試驗證之。
此外,在化學專一鍵結反應中,利用N-羥基琥珀醯亞胺基聚對二甲苯鍍膜 (poly[(4-N-hydroxysuccinimide ester-p-xylylene)-co-(p-xylylene)] ,PPX-NHS ester)其NHS ester官能基對胺基(amino groups)分子有專屬反應的特性,進行各種胺基分子改質功能之應用: (1)抗垢:表面接上amine-PEG,進行螢光蛋白質吸附測試,並利用QCM得到改質表面吸附FBS (Fetal bovine serum 10%)量值為42.0 ± 6.5ng cm-2。(2)抗菌: 表面改質chlorhexidine gluconate (CHX),分別培養抗藥性金黃色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)和陰溝腸桿菌(Enterobacter cloacae),以驗證其抗菌效果。(3)固定蛋白質:利用螢光微陣列(microarray)掃描和QCM分別計算出PPX-NHS ester表面固定BSA量為557 ng cm-2 、515.3 ng cm-2。另外,也利用QCM監測骨形成蛋白(BMP-2)在其表面的吸附情形。最後,PPX-NHS ester分別接上血管內皮生長因子(VEGF)和QK胜肽,並培養牛主動脈血管內皮細胞(BAEC)觀察其細胞基因表現,基因KDR、FLT1皆有效果,其中FLT1具有顯著效果。 表面官能基密度與反應性是值得深入討論的議題,以客製化雙向進料CVD系統製備不同官能基密度的五氟苯酚酯基聚對二甲苯鍍膜 (poly[(4-carboxylic acid pentafluorophenol ester-p-xylylene)- co-(p-xylylene)],PPX-PFP),分別利用帶有螢光短序列核酸適體aptamer和螢光蛋白(Cy5-BSA)與表面pentafluorophenol group (PFP)進行反應,透過微陣列掃描器(microarray scanner)掃描其螢光值訊號,來觀察表面官能基密度與反應性的關係: PFP官能基密度最大的表面螢光未達到最大值,而在比例PFP 1:20達到飽和值,核酸適體與蛋白質都呈現相同的趨勢。推測此現象,是來自於PFP官能基擁有大量的氟,可能在水溶液中帶負電,當PFP官能基密度最高之時,會產生排擠效應,PFP官能基密度低到一定的量之後,也會因可以反應鍵結的PFP官能基太少而固定量下降。最後,此研究所提供的位向選擇性鍵結(site-specific conjugation)技術,預期未來可以應用在醫學檢測儀器(diagnostic devices)、組織工程(tissue engineering)、細胞陣列(cellular arrays)等領域。 | zh_TW |
| dc.description.abstract | In biointerface science, regioselective and orthogonal fashion of conjugations have played impontant roles. In this study, a vapor-deposited, photodefinable polymer, poly(4-benzoyl-p-xylylene-co-p- xylylene), is introduced as a versatile tool for the regioselective immobilization of antifouling materials, such as poly(ethylene glycol), poly(ethylene glycol) methyl ether methacrylate, dextran, and ethanolamine via photopatterning process. The reported immobilization process relies on the photoactivated carbonyl groups of the polymer, which have the potential to enable light-induced cross-linking of molecules and can rapidly react via insertion into CH- or NH-bonds upon photo-illumination at 365 nm. Characterizations using a combination of X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRRAS) have confirmed the characteristics of the immobilizations of these fouling materials, and the resulting antifouling properties are examined by conducting protein adsorption studies of fibrinogen and bovine serum albumin (BSA) on surfaces that were spatially modified with the aid of a photomask during the photochemical process. In addition, quantitative analysis of adsorbed fibrinogen was performed by using a quartz crystal microbalance (QCM), and the reduced adsorptions were found to be 32.8 ± 4.9ng cm-2, 5.5 ± 3.9ng cm-2, 21.4 ± 4.5ng cm-2 and 16.9 ± 3.4ng cm-2 for poly(ethylene glycol) (PEG), poly(ethylene glycol) methyl ether methacrylate (PEGMA), dextran, and ethanolamine, respectively. Finally, with the microscopic patterning technique, we further applied the antifouling modification technology to the unconventional substrate of a stent wherein PEGMA was immobilized on selected areas during the photoimmobilization procedure. Low levels of fibrinogen and BSA adsorption were also observed at the PEGMA-tethered areas.
In bioorthogonoal chemistry, N-hydroxysuccinimide esters (NHS esters) can site-specifically conjugate with amino molecules. Herein, a facile and versatile approach to prepare NHS ester groups on surfaces based on a NHS ester-functionalized poly-p-xylylene coating, poly[(4-N-hydroxysuccinimide ester-p-xylylene)-co-(p- xylylene)] (PPX-NHS ester), was introduced. This reactive coating is synthesized by chemical vapor deposition (CVD) polymerization and can be prepared on a diversity of substrate materials such as gold, glass, steel, poly(methyl methacrylate) (PMMA) and polystyrene (PS). Herein, we performed a variety of biomolecules containing amino groups were conjugated onto NHS ester modified surfaces and also confirmed by fluorescent proteins, quartz crystal microbalance (QCM), cell culture, antibacterial tests. (1) Antifouling property: Substrates was modified with amine-PEG based on PPX-NHS ester coating and then underwent protein adsorption test and QCM, which performed a FBS adsorption value reduced to 42.0 ± 6.5ng cm-2. (2) Antibacterial property: Chlorhexidine gluconate (CHX), an antibacterial molecule, was immobilized on PPX-NHS ester coatings. Subsequently, the antibacterial assay was conducted to verify the resulting antibacterial property. (3) Proteins immobilization: The density of BSA immobilized on PPX-NHS ester was analyzed by microarray scanning and QCM, 557 ng cm-2 and 515.3 ng cm-2. In addition, the primary antibody and second antibody were used to examine the adsorption of BMP-2 via QCM analysis. Finally, surfaces immobilized VEGF and QK peptide was investigated by using the response of in vitro culture of BAECs and the gene expression data were also collected. The density of functional groups on functionalized poly-p-xylylene has drawn many interest. Herein, we prepared poly[(4-carboxylic acid pentafluorophenol ester-p-xylylene)-co-(p-xylylene)] in various densities by manipulating the deposition rate during the copolymerization process. Then, Cy3-aptamer and Cy5-BSA were exploited to observe the relation between densities of functional groups and the reactivity. Optimal fluorescent signals were detected through microarray scanning, and this trend both showed in Cy3-aptamer and Cy5-BSA. In brief, above site-specific conjugation techniques can be applied in biomedical devices, tissue engineering and cellular assays. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:45:47Z (GMT). No. of bitstreams: 1 ntu-103-R01524053-1.pdf: 6423431 bytes, checksum: cbe7d350dc0231c16ddf69235f77681b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 英文縮寫說明 VII 目錄 XI 圖目錄 XIII 表目錄 XV 第一章 緒論 1 1.1 生物界面科學 1 1.2 功能性聚對二甲苯於生物界面之應用 4 1.3 研究動機 10 第二章 實驗 12 2.1 試片及材料準備 12 2.2 製備功能性對二甲苯二聚體 14 2.2.1 製備苯甲醯基對二甲苯二聚體(PCP-benzoyl) 14 2.2.2 製備N-羥基琥珀醯亞胺酯對二甲二聚體(PCP-NHS ester) 15 2.2.3 製備酸五氟苯酚酯基對二甲二聚體(PCP-PFP) 16 2.3 化學氣相沉積共聚合法製備功能性聚對二甲苯鍍膜 18 2.3.1 製備苯甲醯基聚對二甲苯鍍膜(PPX-benzoyl) 18 2.3.2製備N-羥基琥珀醯亞胺酯聚對二甲苯鍍膜(PPX-NHS ester) 19 2.3.3 製備不同比例的五氟苯酚酯基聚對二甲苯鍍膜(PPX-PFP) 20 2.4 苯甲醯基聚對二甲苯鍍膜(PPX-benzoyl)之抗蛋白質吸附研究 22 2.4.1螢光蛋白質吸附實驗 (Protein Adsorption Study) 22 2.4.2石英晶體微天平實驗(Quartz Crystal Microbalance, QCM) 23 2.5 N-羥基琥珀醯亞胺酯聚對二甲苯鍍膜(PPX-NHS ester)固定胺基生物分子之研究 24 2.5.1微接觸印刷術之試驗(Microcontact Printing) 24 2.5.2石英晶體微天平實驗(Quartz Crystal Microbalance, QCM) 26 2.5.3牛血清白蛋白(BSA)微陣列測試(Microarray) 27 2.5.4細胞培養測試(Cell Culture Study) 28 2.5.5抗菌測試 (Antibacterial Test) 28 2.6 五氟苯酚酯基聚對二甲苯鍍膜(PPX-PFP)表面官能基密度之研究 29 2.6.1核酸適體微陣列測試 (Microarray) 29 第三章 結果與討論 31 3.1 苯甲醯基聚對二甲苯鍍膜(PPX-benzoyl)之抗蛋白質吸附研究 31 3.1.1 PPX-benzoyl表面特性分析 31 3.1.2螢光蛋白質吸附實驗 (Protein Adsorption Study) 34 3.1.3石英晶體微天平實驗(QCM) 36 3.2 N-羥基琥珀醯亞胺酯聚對二甲苯鍍膜(PPX-NHS ester)固定胺基生物分子之研究 38 3.2.1 PPX-NHS ester表面特性分析 38 3.2.2微接觸印刷術之試驗(Microcontact Printing) 40 3.2.3 抗蛋白質之量化分析(QCM) 42 3.2.4牛血清白蛋白(BSA)定量之分析 44 3.2.5骨形成蛋白(BMP-2)定量之分析 49 3.2.6細胞培養測試(Cell Culture Study) 52 3.2.7抗菌測試 (AntiacterialTest) 58 3.3 五氟苯酚酯基聚對二甲苯鍍膜(PPX-PFP)表面官能基密度之研究 60 3.3.1 PPX-PFP表面特性分析 60 3.3.2核酸適體(HTQ15 aptamer)微陣列測試 64 3.3.3牛血清白蛋白(BSA) 微陣列測試 67 第四章 結論與未來展望 69 參考資料 71 附錄 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物界面 | zh_TW |
| dc.subject | 化學氣相沉積 | zh_TW |
| dc.subject | N-羥基琥珀醯亞胺基 | zh_TW |
| dc.subject | 苯甲醯基 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | Benzoyl | en |
| dc.subject | Chemical vapor deposition | en |
| dc.subject | Biointerface | en |
| dc.subject | N-hydroxysuccinimide ester | en |
| dc.subject | Surface modification | en |
| dc.title | 以功能性聚對二甲苯透過位向選擇鍵結技術於固定生物分子之開發研究 | zh_TW |
| dc.title | Covalent Immobilization of Biomolecules Based on Functionalized Poly-p-xylenes via Site-Specific Conjugation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游佳欣(Jiashing Yu),張志豪(Chih-Hao Chang),蔡偉博(Wei-Bor Tsai) | |
| dc.subject.keyword | 生物界面,化學氣相沉積,N-羥基琥珀醯亞胺基,苯甲醯基,表面改質, | zh_TW |
| dc.subject.keyword | Biointerface,Chemical vapor deposition,N-hydroxysuccinimide ester,Benzoyl,Surface modification, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
