Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57424
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林?輝(Feng-Huei Lin) | |
dc.contributor.author | Yi-Jhen Jenh | en |
dc.contributor.author | 鄭伊真 | zh_TW |
dc.date.accessioned | 2021-06-16T06:45:33Z | - |
dc.date.available | 2019-08-05 | |
dc.date.copyright | 2014-08-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-28 | |
dc.identifier.citation | 1. 吳國海等人,腦瘤之診斷與治療共識 國家衛生研究院 (NHRI) 癌症研究組 臺灣癌症臨床研究合作組織 (TCOG), 2004. 75: p.29-31
2. National Insititute of Health, 2008. 3. Louis, D., et al., The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol, 2007. 114: p. 97-119. 4. Zhang, X., et al., Glioblastoma multiforme: Molecular characterization and current treatment strategy (Review). Exp Ther Med, 2012. 3(1): p. 9-14. 5. Bechet, D., et al., Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies. Cancer Treat Rev, 2012. 6. Mindermann, T., Tumor recurrence and survival following gamma knife for brain metastases. J Neurosurg (Suppl), 2005. 102: p. 287-288. 7. Maeda, H., et al., Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol, 2003. 3(3): p. 319-328. 8. Allison, BA., et al., Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br. J. Cancer, 1994. 69: p. 833-839. 9. Henderson, BW., et al., How does photodynamic therapy work. Photochem Photobiol, 1992. 55(1): p. 145-157. 10. Lilgel, L., et al., The sensitivity of normal brain and intracranially implanted VX2 tumour to intersitial photodynamic therapy. Br J Cancer, 1996. 73: p. 332-343. 11. Muller, P., et al., Photodynamic therapy of malignant brain tumors. Lasers Med Sci, 1990. 5: p. 245-252. 12. Schmidt, MH., et al., Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neuro-Oncol, 2004. 67: p. 201-207. 13. Prosper, EI., .et al, Characterisation of cerium-doped lanthanum bromide scintillation detector. Lat Am J Phys Educ, 2012. 6(1): p. 162-172. 14. Nikl, M., Scintillation detectors for x-rays. Meas Sci Technol, 2006. 17(4): p. R37-R54. 15. Sousa, MC., et al., Evaluation of physical performance of a scintillation dosemeter for patient dosimetry in diagnostic radiology. The Bri J Radiol, 2000. 73: p. 1297-1305. 16. Bezrukov, F., et al., Interplay between scintillation and ionization in liquid xenon Dark Mater searches. Astropart Phys, 2011. 35: p. 119-127. 17. Jacobsohn, LG., et al., Fluoride Nanoscintillators. J Nanomater, 2011. : p. 1-6. 18. Liu, Y., et al., x-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+, Tb3+ water-souble nanoparticles. J Appl Phys, 2008. 103: p. 063105-1-063105-7. 19. Kobayashi, M., Introduction to scintillators. 2003. 20. Knoll, GF., Radiation Detection and Measurement - 3rd edition. 1999: Chapters 16 to 18. 21. 蕭世裕, 蛋白質中的夜明珠—綠色螢光蛋白. 科學發展, 2009. 440: p. 66-71. 22. Nyokong T., et al., Photosensitizers in Medicine, Environment, and Security. 2012: p. 382-385. 23. Zhang, WC., et al., Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol, 2006. 6(4): p. 1159. 24. Erkinay A., et al., Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from 'rare-earth' formulated particles. J X-Ray Sci Technol, 2011. 19: p. 521-530. 25. Mcllroy BW., et al., Spatial measurement of oxygen levels during photodynamic therapy using time-resolved optical spectroscopy. J Photochem Photobiol Bibiol, 1998. 43: p. 47-55. 26. Lin, CH., et al., Photosensitization of Dye/TiO2 Thin Films by Using Natural Dye of TCPP. Adv Mat Res, 2010. 123-125: p. 923-926. 27. Wamser, SC., et al., Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J Phy Chem B, 2000. 104: p. 3624-3629. 28. Liu, Y., et al., Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett, 2008. 92(4): p. 043901(1)-043901(3). 29. Stella, B., et al., Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci, 2000. 89(11): p. 1452-1464. 30. Leamon, C., et al., Folate-targeted chemotherapy. Adv Drug Deliv Rev, 2004. 56(8): p. 1127-1141. 31. Hilgenbrink, AR., et al., Low, Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci, 2005. 94(10): p. 2135-2146. 32. Weitman, SD., et al., Distribution of the folate receptor GP38 in normal and malignant cell lines and tissue. Cancer Res, 1992. 52: p. 3396-3401. 33. Weitman, SD., et al., The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol, 1994. 21: p. 107-112. 34. Henrik G., et al., Thiols and Disulfides on the Au(111) Surface_ The Headgroup-Gold Interaction. J Am Chem Soc, 2000. 122: p. 3839-3842. 35. Hermans, GT., Bioconjugate Techniques. Academic Press, 1996: p. 169-182. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57424 | - |
dc.description.abstract | 惡性腦瘤因局部浸潤及局部復發對人類健康、生活造成極大的威脅。其預後由手術切除範圍而定,然而腫瘤的組織浸潤常造成病灶邊界不明顯,導致其難以根除。光動力治療提供標靶性的治療,能降低復發率,在副作用最低的情況下提升存活率,具有治療腦癌不二選擇的潛力。然而腦癌的光動力治療仍需在開顱手術下照射外接光源進行,術後的顱壓升高、腦水腫等症狀一直是開顱無可避免的併發症。本研究發展一能藉由能量較高,穿透力較深之X光激發放出可見光之奈米粒子,以三氟化鑭為基體,摻雜鋱為發光中心。在維持奈米尺寸的條件下,將材料表面利用金及聚乙二醇修飾後,接枝葉酸及光動力藥物中-四(4-羧基苯基)卟吩(Meso-tetra(4-carboxyphenyl) porphine, MTCP),可進一步提高腫瘤中藥物累積量。在生物相容性測試下,三氟化鑭本身不影響細胞活性及細胞增生,而在x光照射三氟化鑭後激發光敏物質而抑制神經膠細胞瘤增生。接枝葉酸後的材料,經由電子顯微鏡也證實了癌細胞確實將其包吞入內。此材料在搭配以x光為激發射源的光動力治療下,具備腦癌治療的潛力。如此一來,光動力治療便不再受傳統光源穿透深度限制,也毋須承擔開顱後的風險,又非侵入式療法,更能提升治療品質。 | zh_TW |
dc.description.abstract | Owing to local invasion and local recurrence, the outcomes of brain tumors are poor. Their prognosis is highly dependent on the degree of surgery resection; however, the margin of tumor is hard to define due to tissue invasion. Photodynamic therapy appears as a promising treatment modality, yet it is restricted by the short penetration of light source. Therefore, as for brain cancer treatment, the whole procedure should be done during craniotomy. We try to investigate LaF3:Tb, a luminescence nanoparticle; use its emission light triggered by X-ray to excite Meso-tetra(4-carboxyphenyl) porphine (MTCP), the photosensitizer, and then leads to photodamage to tumor cells. The LaF3:Tb nanoparticle is a biocompatibility nanomaterial; shows no significant influence in 3T3 cell viability and proliferation. The 9L gliosarcoma cells with LaF3:Tb and MTCP exhibit decreased viability under the X-ray irradiation. By means of Au coating, PEG conjugating on the nanoparticle surface, we can conjugate folic acid and MTCP as well, which improve the nanoparticle and photosensitizer’s tumor accumulation. The cell TEM confirms the cellular uptake of LaF3@Au-PEG-FA/MTCP. This model has promising potential to overcome the limitation of penetration, so that the treatment procedures are done in a noninvasive way which elevates the patient’s treatment quality greatly. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:45:33Z (GMT). No. of bitstreams: 1 ntu-103-R00548008-1.pdf: 7151397 bytes, checksum: 00406aa36eee87167e01324289f1698e (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii Chapter 1 Introduction 1 1.1 Brain Cancer 1 1.2 Treatments of Brain Cancer 3 1.3 Photodynamic Therapy for Brain Cancer 5 1.4 Limitation to Photodynamic Therapy for Brain Cancer 9 1.5 Purpose of Study 10 Chapter 2 Literature Reviews 11 2.1 Luminescence Nanoparticles 11 2.1.1 Luminescence Mechanism 12 2.1.2 Luminescence Properties of Tb Doped LaF3 Nanoparticles 13 2.1.3 Luminescence Nanoparticles for Photodynamic Therapy 15 2.2 Surface modification 17 2.2.1 Photosensitizer 17 2.2.2 Polyethylene glycol 19 2.2.3 Folic acid 20 2.3 Bioconjugation 22 Chapter 3 Materials and Methods 25 3.1 Materials 25 3.1.1 Chemicals 25 3.1.2 Instrumentation 27 3.2 Nanoparticle Synthesis 28 3.2.1 Synthesis of Luminescence Nanoparticles LaF3:Tb 28 3.2.2 Surface Modification of LaF3 Nanoparticles with PEG 29 3.2.3 MTCP-PEG / folic acid-PEG Conjugation 30 3.3 Flow Chart 31 3.4 LaF3:Tb Characterization 32 3.4.1 X –ray diffractometer (XRD) 32 3.4.2 Dynamic Light Scattering (DLS) 32 3.4.3 Transmission electron microscopy (TEM) 32 3.4.4 Energy Dispersive X-ray Spectroscopy (EDX) 33 3.4.5 Photoluminescence (PL) 33 3.5 Surface Modification 34 3.5.1 Zetapotential 34 3.5.2 Fourier Transform Infrared Spectroscopy (FTIR) 34 3.5.3 Transmission electron microscopy (TEM) 34 3.6 In Vitro Study 35 3.6.1 Therapeutic effect 35 3.6.2 Biocompatibility 37 3.6.3 Cellular uptake 38 Chapter 4 Results and Discussion 40 4.1 LaF3:Tb Characterization 40 4.1.1 X –ray diffractometer (XRD) 40 4.1.2 Dynamic Light Scattering (DLS) 41 4.1.3 Transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDX) 42 4.1.4 Photoluminescence (PL) 46 4.2 Surface Modification 47 4.2.1 Fourier Transform Infrared Spectroscopy (FTIR) 47 4.2.2 Transmission Electric Microscopy (TEM) 49 4.3 In Vitro Study 50 4.3.1 Therapeutic Effect 50 4.3.2 Biocompatibility 51 4.3.3 Cellular uptake 52 Chapter 5 Conclusions 53 Reference 54 | |
dc.language.iso | en | |
dc.title | X光致螢光奈米粒子在光動力治療腦癌之研究 | zh_TW |
dc.title | X-ray Luminescence Nanoparticles Used in Photodynamic Therapy for Brain Cancer Treatment | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張國基(Kuo-Chi Chang),楊凱強(Kai-Chiang Yang),林建成(Chien Chen Lin),郭士民(Shyh Ming Kuo) | |
dc.subject.keyword | 光動力治療,X光致螢光奈米粒子,聚乙二醇,葉酸,腦瘤, | zh_TW |
dc.subject.keyword | photodynamic therapy,luminescence nanoparticle,PEG,folic acid,brain tumor, | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
Appears in Collections: | 醫學工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 6.98 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.