請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖婉君 | |
| dc.contributor.author | Yu-Chun Chen | en |
| dc.contributor.author | 陳昱均 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:45:28Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2014-08-01 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-27 | |
| dc.identifier.citation | [1] I. F A. Gotchev, G.B. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-
Dimensional media for mobile devices,” Proceedings of the IEEE, vol.99, no. 4, pp. 787–741, Apr. 2011. [2] C.G. Gü rler, B. Gö rkemli, G. Saygili, and A.M. Tekalp, “Flexible transport of 3-D video over networks,” Proceedings of the IEEE, vol.99, no. 4, pp. 694–707, Apr. 2011. [3] I. Feldmann, M. Mueller, F. Zilly, R. Tanger, K. Mueller, A. Smolic, P. Kauff, and T. Wiegand, “HHI test material for 3-D video,” in Proc. 84th Meet. ISO/IEC JTC1/SC29/WG11, document M15413, Apr. 2008. [4] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1103–1120, Sep. 2007. [5] A. Vetro, T. Wiegand, and G. Sullivan, “Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard,” Proceedings of the IEEE, vol. 99, issue 4, pp. 626–642, Apr. 2011. [6] R-P.M. Berretty, F.J. Peters, and G.T.G. Volleberg. 'Real time rendering for multiview autostereoscopic', SPIE Proc. Stereoscopic Displays and Virtual Reality Systems XIII, V.6055, pp.208–219, 2006. [7] Liu, Q. Huang, S. Ma, D. Zhao, W. Gao, S. Ci, and H. Tang, 'A novel rate control technique for multiview video plus depth based 3D video Coding', IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 562–571, Jun. 2011. [8] F. Shao, G. Jiang, M. Yu, K. Chen, and Y.-S. Ho, “Asymmetric coding of multi-view video plus depth based 3D video for view rendering,” IEEE Transactions on Multimedia, vol. 14, no. 1, pp. 157–167, Feb. 2012. [9] Q. Zhang, P. An, Y. Zhang, L. Shen, and Z. Zhang, “Low complexity multiview video plus depth coding,” IEEE Transactions on Consumer Electronics, vol. 57, no. 7, pp. 1857–1865, Nov. 2011. [10] B. Kamolrat, W.A.C Fernando, M. Mrak, and A. Kondoz, “Joint source and channel coding for 3D video with depth image - based rendering,” IEEE Transactions on Consumer Electronics, vol. 54, no. 2, pp. 887–894, May 2008. [11] A. Hamza and M. Hefeeda, “Energy-efficient multicasting of multiview 3D videos to mobile devices,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 8, issue 3s, pp. 45:1–45:25, Sep. 2012. [12] B. Bartczak, P. Vandewalle, O. Grau, G. Briand, J. Fournier, P. Kerbiriou, M. Murdoch, M. Muller, R. Goris, R. Koch, and R. Vleuten, “Display-independent 3D-TV production and delivery using the layered depth video format,” IEEE Transactions on Broadcasting, vol.57, no. 2, pp.477-490,Jun. 2011. [13] J. Y. Lee, H. C. Wey, and D. S. Park, “A fast and efficient multi-view depth image coding method based on temporal and inter-view correlations of texture images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 12, pp. 1859–1868, Dec. 2011. [14] H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proceedings of the IEEE, vol. 99, no. 4, pp. 540–555, Apr. 2011. [15] Y. Aksoy, O. Sener, A. Alatan, and K. Ugur, “Interactive 2D-3D image conversion for mobile devices,” IEEE International Conference on Image Processing, pp. 2729–2732, Sep. 2012. [16] L. Do, G. Bravo, S. D. W. Zinger, and P.H.N., “GPU-accelerated realtime free-viewpoint DIBR for 3DTV,” IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 633–640, May 2012. [17] Z. Shen, et al., “Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications,” IEEE Communications Magazine, vol.50, no.2, pp.122–130, Feb. 2012. [18] M. Iwamura, K. Etemad, M.-H. Fong, R. Nory, and R. Love, “Carrier aggregation framework in 3gpp lte-advanced [wimax/lte update],” IEEE Communications Magazine, vol. 8, pp. 60 –67, Aug. 2010. [19] L. Liu, M. Li, J. Zhou, X. She, L. Chen, Y. Sagae, and M. Iwamura, “Component carrier management for carrier aggregation in lte-advanced system,” IEEE 73rd Vehicular Technology Conf. (VTC Spring), pp. 1–6, May 2011. [20] F. Wu, Y. Mao, S. Leng, and X. Huang, “A carrier aggregation based resource allocation scheme for pervasive wireless networks,” IEEE 9th Int. Conf. Dependable, Autonomic and Secure Computing (DASC), pp. 196–201, Dec. 2011. [21] G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier aggregation for lte-advanced mobile communication systems,” IEEE Communications Magazine, vol. 48, pp. 88 –93, Feb. 2010. [22] L. Chen, W. Chen, X. Zhang, and D. Yang, “Analysis and simulation for spectrum aggregation in lte-advanced system,” IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), pp. 1–6, Sep. 2009. [23] K. Pedersen, F. Frederiksen, C. Rosa, H. Nguyen, L. Garcia, and Y. Wang, “Carrier aggregation for lte-advanced: functionality and performance aspects,” IEEE Communications Magazine, vol. 49, pp. 89 –95, Jun. 2011. [24] L. Anxin, K. Takeda, N. Miki, Y. Yuan, and H. Kayama, 'Search space design for cross-carrier scheduling in carrier aggregation of LTE-Advanced system,' IEEE International Conference on Communications, pp. 1–5, Jun. 2011. [25] Y. Wang, K. Pedersen, T. Sorensen, and P. Mogensen, “Carrier load balancing and packet scheduling for multi-carrier systems,” IEEE Transactions on Wireless Communications, vol. 9, pp. 1780–1789, May 2010. [26] L. Hyang-Won and Song Chong, “Downlink resource allocation in multi-carrier systems: frequency-selective vs. equal power allocation”, IEEE Transactions on Wireless Communications, Vol. 7, pp. 3738–3747, Oct. 2008. [27] D. Lecompte and F. Gabin, 'Evolved multimedia broadcast/ multicast service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements,' IEEE Communications Magazine, vol. 50, pp. 68–74, Nov. 2012. [28] Y. Mori , N. Fukushima , T. Yendo , T. Fujii, and M. Tanimoto, 'View generation with 3D warping using depth information for FTV,” Signal Processing: Image Communication, vol. 24, no. 1–2, pp. 65–72, Jan. 2009. [29] G. Cheung, V. Velisavljevic, and A. Ortega, 'On dependent bit allocation for multiview image coding with depth-image-based rendering,' IEEE Transactions on Image Processing, vol. 20, issue 11, pp. 3179–3194, Dec. 2011. [30] P. Ndjiki-Nya et al., “Depth image-based rendering with advanced texture synthesis for 3D video,” IEEE Transactions on Multimedia, vol. 13, no. 3, pp. 453–465, Jun. 2011. [31] 3GPP, TS36.300 (V11.3.0), “Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; stage 2,” Sep. 2012. [32] S. Martello and P. Toth, Knapsack problems. Wiley New York, 1990. [33] 3GPP, TR 36.942 (V11.0.0), “Evolved universal terrestrial radio access (E-UTRA); radio frequency (RF) system scenarios” Sep. 2012. [34] 3GPP, TS 36.213 (V11.1.0.3), “Evolved universal terrestrial radio access (E-UTRA); physical layer procedures,” Dec. 2012. [35] G. Araniti, V. Scordamaglia, M. Condoluci, A. Molinaro, and A. Iera, “Efficient frequency domain packet scheduler for point-to-multipoint transmissions in LTE networks,” IEEE International Conference on Communications, pp. 4405–4409, Jun. 2012. [36] Z. Gaofeng, J. Gangyi, Y. Mei, L. Fucui, S. Feng, and P. Zongju, “Joint video/depth bit allocation for 3D video coding based on distortion of synthesized view,” IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, pp. 1–6, Jun. 2012. [37] http://www.ffmpeg.org/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57422 | - |
| dc.description.abstract | 隨著近幾年可裸視3D影像的手機設備以及筆記型電腦的出現,提供服務的廠商面臨著如何在長期演進技術升級版網路中傳輸3D影像串流。跟傳統的單視角3D影像不同,多視角3D影像可以提供使用者視角選擇的權利,也可以發展出更多不同的產品,像是自由視角電視。當每一部多視角3D影像的所有視角都被傳送時,提供多視角3D影像的服務可能會超出網路負荷,而深度資訊合成技術使得使用者可以透過鄰近的左邊視角及鄰近的右邊視角去合成出想要觀看的視角,所以一部多視角3D影像中的所有視角不一定要全部被傳送。然而,我們必須小心的選擇傳送的視角以限制影像的失真和最小化頻寬的使用量。
在這篇論文中,我們設計了一個新的最佳化問題,叫做視角及調製編碼格式的選擇問題,去最小化一部多視角3D影像在長期演進技術升級版網路中群播所需要消耗的頻寬,並提出了一個叫做視角及調製編碼格式聚合的演算法,去找出此問題的最佳解。除了頻寬的議題之外,由於多視角3D影像的高資料率,使得資料延遲問題也是相當的重要,而載波聚合技術是一個在長期演進技術升級版網路中常被拿來解決高資料率問題的方法,因此我們另外設計了一個新的NP-hard 問題,叫做視角、調製編碼格式及載波的選擇問題,去最小化一部多視角3D影像利用載波聚合在長期演進技術網路中群播所需要消耗的頻寬,並同時解決資料延遲的問題,我們提出了一個叫做利用調製編碼格式及載波之視角指派的非線性時間演算法,去找出此問題的最佳解,並根據一些特性,提出一個啟發式演算法,並說明它為何為線性時間演算法。最後,從我們的模擬結果可以看出我們的方法在兩個問題中皆可以減少至少百分之二十的頻寬消耗量,且在第二個問題中,我們的方法皆可以解決資料延遲的問題。 | zh_TW |
| dc.description.abstract | With the recent emergence of naked-eye 3D mobile devices and various 3D-enabled laptops, service providers are now faced with the opportunity to provide mobile 3D video streaming in LTE-A networks. Different from traditional single-view 3D videos, multi-view 3D videos allow users to choose preferred view angles and thus are promising for new applications, such as free-viewpoint television (FTV). Enabling multi-view 3D video services may also overwhelm the network when transmitting all views of every video. Fortunately, depth-image-based rendering (DIBR) allows each mobile client to synthesize the desired view from a nearby left view and right view, so that not all views of a video are necessary to be transmitted. Nevertheless, we need to carefully choose the transmitted views to limit the video distortion and minimize the bandwidth consumption. In this thesis, we first formulate a new optimization problem, called View and MCS Selection Problem (VMS) to minimize the bandwidth consumption for multi-view 3D video multicast in LTE-A networks. An algorithm, called View and MCS Aggregation (VMAG) is proposed to find the optimal solution of VMS. Except for the bandwidth issue, the delay problem is also important due to high data rate of multi-view 3D video, and the carrier aggregation (CA) technique is one of choices to be employed to allow user equipment (UE) for high data rate communications in LTE-A networks. Therefore, we further formulate a new NP-hard problem, called View, MCS and Carrier Selection Problem (VMCS) to minimize the bandwidth consumption for multi-view 3D video multicast with CA in LTE-A networks. The optimal solution of VMCS can be found by algorithm, View Assignment with MCS and Carrier (VAMC), with non-polynomial time complexity. Algorithm View and MCS Aggregation with Carrier (VMAGC) is further proposed based on VMAG to effectively find the near optimal solution of VMCS. Simulation results manifest that the bandwidth consumption can be effectively reduced by over 20% in VMS and VMCS, and the transmission time can satisfy the delay constraint of video in VMCS. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:45:28Z (GMT). No. of bitstreams: 1 ntu-103-R01942052-1.pdf: 2555569 bytes, checksum: 86397fb765cf91f504f10f7a2bf08433 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Background 1 1.1.1 3-D Video 1 1.1.2 Carrier Aggregation 2 1.2 Related Works 5 1.3 Motivation and Challenges 7 1.4 Thesis Organization 11 Chapter 2 View and MCS Selection Problem 13 2.1 System Model 13 2.2 Problem Formulation 16 2.3 View and MCS Aggregation 17 2.3.1 Initialization Phase 18 2.3.2 Aggregation Phase 20 2.3.3 Solution Optimality 29 2.3.4 Complexity Analysis 31 Chapter 3 View, MCS and Carrier Selection Problem 33 3.1 Multiple Carriers Model 33 3.2 Problem Formulation and NP-Hard Proof 36 3.3 View Assignment with MCS and Carrier 40 3.3.1 Initialization Phase 41 3.3.2 Connection Phase 41 3.3.3 Solution Optimality 45 3.3.4 Complexity Analysis 47 3.4 View and MCS Aggregation with Carrier 48 3.4.1 Search Phase 49 3.4.2 Maximization Phase 50 3.4.3 Examination Phase 58 3.4.4 Complexity Analysis 61 Chapter 4 Performance Evaluation 63 4.1 Simulation Settings 63 4.2 Simulation Results 67 4.2.1 Scenario 1: Comparison with the original AMC method 67 4.2.2 Scenario 2: Synthesized range 70 4.2.3 Scenario 3: Distribution of user locations 71 4.2.4 Scenario 4: Number of views 73 4.2.5 Scenario 5: Setting of delay constraint 74 4.2.6 Scenario 6: Ratio of LTE users 76 4.2.7 Scenario 7: Distribution of user preferences 77 4.2.8 Scenario 8: Distribution of user locations and preferences 78 Chapter 5 Conclusion and Future Works 81 REFERENCES 83 | |
| dc.language.iso | en | |
| dc.subject | 長期演進技術升級版 | zh_TW |
| dc.subject | 多視角3D影像 | zh_TW |
| dc.subject | 群播 | zh_TW |
| dc.subject | 載波聚合 | zh_TW |
| dc.subject | 深度資訊合成 | zh_TW |
| dc.subject | Multi-View 3D video | en |
| dc.subject | Multicast | en |
| dc.subject | Carrier aggregation | en |
| dc.subject | Depth-image-based rendering | en |
| dc.subject | LTE-A | en |
| dc.title | 具使用載波聚合的進階型長期演進技術網路中運用深度資訊合成之多視角3D視訊群播 | zh_TW |
| dc.title | Efficient Multi-View 3D Video Multicast with Depth-Image-Based Rendering in LTE-A Networks with Carrier Aggregation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗男,周承復,楊得年 | |
| dc.subject.keyword | 長期演進技術升級版,多視角3D影像,群播,載波聚合,深度資訊合成, | zh_TW |
| dc.subject.keyword | LTE-A,Multi-View 3D video,Multicast,Carrier aggregation,Depth-image-based rendering, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
