Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証(Wen-Jeng Hsueh)
dc.contributor.authorHsing-Tzu Choen
dc.contributor.author卓杏姿zh_TW
dc.date.accessioned2021-06-16T06:45:01Z-
dc.date.available2019-08-13
dc.date.copyright2014-08-13
dc.date.issued2014
dc.date.submitted2014-07-28
dc.identifier.citation[1]A. L. Jones, ‘‘Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am 55, 261-269 (1965).
[2]S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, ‘‘Channel optical waveguide directional couplers,” Appl. Phys. Lett. 22, 46-47 (1973).
[3]D. Christodoulides and R. Joseph, ‘‘Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794-796 (1988).
[4]R. R. Syms, ‘‘Approximate solution of eigenmode problems for layered coupled waveguide arrays,” IEEE J. Quant. Electron. 23, 525-532 (1987).
[5]H. Eisenberg, Y. Silberberg, R. Morandotti, and J. Aitchison, ‘‘Diffraction management,” Phys. Rev. Lett. 85, 1863-1866 (2000).
[6]T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, ‘‘Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 093901-093901 (2002).
[7]A. Szameit, F. Dreisow, H. Hartung, S. Nolte, A. Tunnermann, and F. Lederer, ‘‘Quasi-incoherent propagation in waveguide arrays,” Appl. Phys. Lett. 90, 241113 (2007).
[8]A. A. Sukhorukov, ‘‘Reflectionless potentials and cavities in waveguide arrays and coupled-resonator structures,” Opt. Lett. 35, 989-991 (2010).
[9]A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, and A. A. Sukhorukov, ‘‘Realization of reflectionless potentials in photonic lattices,” Phys. Rev. Lett. 106, 193903 (2011).
[10]A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. Saleh, ‘‘Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A: At. Mol. Opt. Phys. 86, 040302 (2012).
[11]Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, ‘‘Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[12]Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, ‘‘Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105, 163905 (2010).
[13]S. Lepri and G. Casati, ‘‘Asymmetric wave propagation in nonlinear systems,” Phys. Rev. Lett. 106, 164101 (2011).
[14]S. Lepri and G. Casati, in Localized Excitations in Nonlinear Complex Systems, ed: Springer, 2014, pp. 63-75.
[15]F. Delyon, Y.-E. Levy, and B. Souillard, ‘‘Nonperturbative bistability in periodic nonlinear media,” Phys. Rev. Lett. 57, 2010 (1986).
[16]Z. Cao, X. Qi, G. Zhang, and J. Bai, ‘‘Asymmetric light propagation in transverse separation modulated photonic lattices,” Opt. Lett. 38, 3212-3215 (2013).
[17]M. Terraneo, M. Peyrard, and G. Casati, ‘‘Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier,” Phys. Rev. Lett. 88, 094302 (2002).
[18]A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. TŘnnermann, ‘‘Control of directional evanescent coupling in fs laser written waveguides,” Opt. Express 15, 1579-1587 (2007).
[19]T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, ‘‘Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752 (1999).
[20]S. Longhi and K. Staliunas, ‘‘Self-collimation and self-imaging effects in modulated waveguide arrays,” Opt. Commun. 281, 4343-4347 (2008).
[21]A. Szameit, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tunnermann, E. Suran, F. Louradour, A. Barthelemy, and S. Longhi, ‘‘Image reconstruction in segmented femtosecond laser-written waveguide arrays,” Appl. Phys. Lett. 93, 181109 (2008).
[22]A. Szameit and S. Nolte, ‘‘Discrete optics in femtosecond-laser-written photonic structures,” J. Phys. B: At., Mol. Opt. Phys 43, 163001 (2010).
[23]S. Minardi, F. Eilenberger, Y. Kartashov, A. Szameit, U. Ropke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, and L. Torner, ‘‘Three-dimensional light bullets in arrays of waveguides,” Phys. Rev. Lett. 105, 263901 (2010).
[24]H. A. Haus,Waves and fields in optoelectronics, Prentice-Hall Englewood Cliffs, NJ, Place(1984).
[25]A. Hardy and W. Streifer, ‘‘Coupled mode theory of parallel waveguides,” J. Lightw. Technol. 3, 1135-1146 (1985).
[26]W.-P. Huang, ‘‘Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am A 11, 963-983 (1994).
[27]A. Yariv and P. Yeh,Optical Waves in Crystals, Wiley New York, Place(1984).
[28]S. Longhi, ‘‘Invisibility in non-Hermitian tight-binding lattices,” Phys. Rev. A: At. Mol. Opt. Phys. 82, 032111 (2010).
[29]D. N. Christodoulides, F. Lederer, and Y. Silberberg, ‘‘Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817-823 (2003).
[30]S. Longhi, ‘‘Transmission and localization control by ac fields in tight-binding lattices with an impurity,” Phys. Rev. B: Condens. Matter 73, 193305 (2006).
[31]P. Kevrekidis, K. Rasmussen, and A. Bishop, ‘‘The discrete nonlinear Schrodinger equation: a survey of recent results,” Int. J. Mod Phys B 15, 2833-2900 (2001).
[32]H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis, and A. Brauer, ‘‘Tailoring guided modes in waveguide arrays,” Opt. Express 11, 3404-3411 (2003).
[33]C. Kittel and P. McEuen,Introduction to Solid State Physics, Wiley New York, Place(1986).
[34]A. Szameit, H. Trompeter, M. Heinrich, F. Dreisow, U. Peschel, T. Pertsch, S. Nolte, F. Lederer, and A. Tunnermann, ‘‘Fresnel's laws in discrete optical media,” New J Phys. 10, 103020 (2008).
[35]H. Zhu, F. Li, Y. Liu, C. Jiang, B. Tang, and X. Zang, 'Nonreciprocal Transmission through Grating with Magneto-Optical Substrate,' in Nanophotonics, Nanoelectronics and Nanosensor, 2013, p. NSa3A. 34.
[36]P. Yeh,Optical Waves in Layered Media, Wiley New York, Place(1988).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57411-
dc.description.abstract在這篇論文中,我們提出一個將離散薛丁格方程式寫成矩陣的形式,利用轉移矩陣法分析能量在光波導陣列中基本光學特性、傳遞特性、色散關係式、電場分佈以及光的行進走向。在本文裡所分析的光波導陣列結構分為兩種:第一種為兩相異均質光波導陣列之間的邊界特性,另一種為一無限均質光波導陣列結構裡內嵌入有限結構的線性光波導陣列以及折射率會隨電場改變的非線性光波導陣列。前者是以離散斯涅爾定律為理論基礎,模擬其斜向入射(無繞射情形下的角度)時的場形,後者則著重於研究內嵌入的波導根數多寡對能量傳遞所造成的影響,並以解析解印證之,最後我們在非線性波導陣列中加入一非對稱因子,引入非互易系統,讓非線性波導陣列結構可應用在聲、光整流器。zh_TW
dc.description.abstractThe main purpose of this study is to propose a discrete Schrodinger equation which is expressed in the form of a matrix in order to analyze the properties of electric field coupling and other fundamental optical properties in the optical waveguide arrays, such as the light propagation, the dispersion relation, and the electric field distribution. In this thesis, we discuss two kinds of situations in the waveguide arrays: The first one is bound state at the edge of two homogeneous waveguide arrays, and the second one is the finite linear or nonlinear optical waveguide arrays embedded in an infinite arrays structure. Based on the theory of discrete Snell's law, the former study simulate the light propagation is and simulate the light propagation. The later focuses on the influence of the energy transport, which is caused by the increasing number of waveguides in the infinite arrays. Furthermore, we add the asymmetry factor in a nonlinear waveguide array, which introduces the non-reciprocal property, and it allows nonlinear waveguide arrays structure to be applied to sound and light rectifiers.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:45:01Z (GMT). No. of bitstreams: 1
ntu-103-R01525025-1.pdf: 1554907 bytes, checksum: 4befe481f1e0f032b9a6b3362bb2f67b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
表目錄 viii
符號表 ix

第一章 導論 1
1.1 背景與研究動機 1
1.2 歷史文獻回顧 2
1.3 論文架構 4
第二章 光波導陣列及其離散光學原理 5
2.1 光波導陣列 5
2.2 波動方程式 6
2.3 耦合模態理論 8
2.4 緊束縛近似薛丁格方程式 11
2.4.1 緊束縛近似法 11
2.4.2 薛丁格方程式 12
2.5 離散光場 12
2.5.1 單根波導陣列繞射 13
2.5.2 波導陣列繞射 15
第三章 線性與非線性光波導陣列理論 24
3.1 布洛赫定理 24
3.2 轉移矩陣法與色散方程式 25
3.3 光波導陣列結構界面分析 27
3.3.1 邊界情況與色散方程式 28
3.3.2 能量的反射率與穿透率 31
3.4 線性光波導陣列之動態系統分析 34
3.4.1 單層波導轉移矩陣分析 34
3.4.2 線性多層分析 36
3.5 非線性光波導陣列之動態系統分析 37
3.5.1 非線性波導陣列原理 38
3.5.2 單層非線性波導分析 38
3.5.3 多層非線性波導分析 41
第四章 光波導陣列之離散動力系統特性 46
4.1 陣列邊界的動態系統特性 46
4.1.1 光波導陣列邊界的光學特性 46
4.1.2 邊界的光傳輸特性 47
4.2 非線性參數對動態系統之影響 48
4.2.1 非線性光波導陣列的光學特性 48
4.2.2 非線性與線性波導陣列的動態系統 49
4.2.3 非線性波導陣列對光傳輸之影響 50
4.2.4 多層非線性波導根數對動態系統之影響 50
4.3 非對稱均質光波導陣列的輸出特性分析 51
4.3.1 雙層非均質非線性波導陣列的光學特性 52
4.3.2 雙層非均質非線性波導陣列的的光傳輸特性 53
第五章 結論與未來展望 72
5.1 結論 72
5.2 未來展望 74
參考文獻 75
dc.language.isozh-TW
dc.subject非線性光學zh_TW
dc.subject線性光學zh_TW
dc.subject離散zh_TW
dc.subject光波導陣列zh_TW
dc.subject轉移矩陣法zh_TW
dc.subjecttransfer matrix methoden
dc.subjectoptical waveguide arraysen
dc.subjectlinear opticsen
dc.subjectnon-linear opticsen
dc.subjectdiscreteen
dc.title一維線性與非線性光波導陣列中的光束傳播特性zh_TW
dc.titleLight-Propagation Properties in One-Dimension Linear and Nonlinear Waveguide Arraysen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭勝文(Sheng-Weng Cheng),郭鴻飛(Hung-fei Kuo),王志星(Chih-Hsing Wang),溫新助(Sin-Jhu Wun)
dc.subject.keyword轉移矩陣法,光波導陣列,線性光學,非線性光學,離散,zh_TW
dc.subject.keywordtransfer matrix method,optical waveguide arrays,linear optics,non-linear optics,discrete,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved