Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57400
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘(Yaow-Ming Chen)
dc.contributor.authorYen-Fu Chenen
dc.contributor.author陳彥輔zh_TW
dc.date.accessioned2021-06-16T06:44:33Z-
dc.date.available2017-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-28
dc.identifier.citation[1] R. Majumder, “A hybrid microgrid with DC connection at back to back converters,” IEEE Trans. on Smart Grid, vol. 5, no. 1, pp. 251-259, Jan. 2014.
[2] T. Friedli, S.D. Round, D. Hassler, and J.W. Kolar, “Design and performance of a 200-kHz all-SiC JFET current DC-link back-to-back converter,” IEEE Trans. on Industry Applications, vol. 45, no. 5, pp. 1868-1878, Sep.- oct. 2009.
[3] H. Akagi and R. Kitada, “Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters,” IEEE Trans. on Power Electronics, vol. 26, no. 9, pp. 2457-2464, Sep. 2011.
[4] J.W. Kolar, F. Schafmeister, S.D. Round, and H. Ertl, “Novel three-phase AC–AC sparse matrix converters,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1649-1661, Sep. 2007.
[5] X. Liu, P. Wang, P.C. Loh, and F. Blaabjerg, “A three-phase dual-input matrix converter for grid integration of two AC type energy resources,” IEEE Trans. on Industrial Electronics, vol. 60, no. 1, pp. 20-30, Jan. 2013.
[6] H. Nikkhajoei and M.R. Iravani, “A matrix converter based micro-turbine distributed generation system,” IEEE Trans. on Power Delivery, vol. 20, no. 3, pp. 2182-2192, Jul. 2005.
[7] T. Friedli and J.W. Kolar, “Comprehensive comparison of three-phase AC-AC matrix converter and voltage DC-Link back-to-back converter systems,” Power Electronics Conference, vol., no., 2010, pp. 2789-2798.
[8] D. Casadei, G. Grandi, C. Rossi, A. Trentin, and L. Zarri, “Comparison between back-to-back and matrix converters based on thermal stress of the switches,” IEEE International Symposium on Industrial Electronics, vol. 2, no., 2004, pp. 1081-1086.
[9] G. Buticchi, E. Lorenzani, and C. Bianchini, “Optimal system control of a back-to-back power converter for wind grid-connected converter,” Energy Conference and Exhibition, vol., no., 2012, pp. 195-200.
[10] F. Sastrowijoyo, J. Choi, and G.B. Chung, “Fuzzy control for back to back converter in DFIG for wind power generation,” IEEE 8th International Conference on Power Electronics and ECCE Asia, vol., no., 2011, pp. 1337-1343.
[11] S. Hu and H. Xu, “Research on sensorless control based back-to-back converter for direct-driven WECS,” Power and Energy Engineering Conference, vol., no., 2009, pp. 1-4.
[12] L. Queval and H. Ohsaki, “Back-to-back converter design and control for synchronous generator-based wind turbines,” International Conference on Renewable Energy Research and Applications, vol., no., 2012, pp. 1-6.
[13] A.P. Deshpande, B.K. Chaudhari, and V.N. Pande, “Design and simulation of back-to-back converter for modern wind energy generation system using dSPACE,” I International Conference on Power, Signals, Controls and Computation, vol., no., 2012, pp. 1-6.
[14] J. Alcala, V. Cardenas, J. Perez-Ramirez, R.J. Betancourt, and H. Miranda, “Improving power flow in transformers using a BTB converter to balance low voltage feeders,” IEEE ECCE, vol., no., 2012, pp. 2038-2044.
[15] R. Simanjorang, Y. Miura, T. Ise, S. Sugimoto, and H. Fujita, “Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines,” Power Conversion Conference, vol., no., 2007, pp. 997-1004.
[16] Y.-M. Chen, H.-C. Wu, Y.-C. Chen, K.-Y. Lee, and S.-S. Shyu, “The AC line current regulation strategy for the grid-connected PV system,” IEEE Trans. on Power Electronics, vol.25, no.1, pp. 209-218, Jan. 2010.
[17] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. on Power Electronics, vol.22, no.4, pp. 1107-1115, Jul. 2007.
[18] J.M. Guerrero, L. Garcia de Vicuna, J. Matas, M. Castilla, and J. Miret, “A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,” IEEE Trans. on Power Electronics, vol.19, no.5, pp. 1205-1213, Sep. 2004.
[19] U. Borup, F. Blaabjerg, and P.N. Enjeti, “Sharing of nonlinear load in parallel-connected three-phase converters,” IEEE Trans. on Industry Applications, vol.37, no.6, pp. 1817-1823, Nov.- dec. 2001.
[20] F. Katiraei and M.R. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Trans. on Power Systems, vol.21, no.4, pp. 1821-1831, Nov. 2006.
[21] H. Bevrani and S. Shokoohi, “An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids,” IEEE Trans. on Smart Grid, vol. 4, no. 3, pp. 1505-1513, Sep. 2013.
[22] A.A. Fouad, Q. Zhou, and V. Vittal, “System vulnerability as a concept to assess power system dynamic security,” IEEE Trans. on Power Systems, vol.9, no.2, pp. 1009-1015, May 1994.
[23] X. Yu and C. Singh, “A practical approach for integrated power system vulnerability analysis with protection failures,” IEEE Trans. on Power Systems, vol. 19, no. 4, pp. 1811-1820, Nov. 2004.
[24] M.K. Mishra, A. Joshi, and A. Ghosh, “Control schemes for equalization of capacitor voltages in neutral clamped shuntcompensator,” IEEE Trans. on Power Delivery, vol. 18, no. 2, pp. 538-544, Apr. 2003.
[25] S. Orts, F. J. Gimeno-Sales, A. Albellan, S. Seguí-Chilet, M. Alcaniz, and R. Masot, “Achieving maximum efficiencyin three-phase systems with a shunt active power compensator based on IEEE std. 1459,” IEEE Trans. on Power Delivery, vol. 23, no. 2, pp. 812-822, Apr. 2008.
[26] S. Seguí-Chilet, F.J. Gimeno-Sales, S. Orts, M. Alcaniz, and R. Masot, “Selective shunt active power compensator in fourwire electrical systems using symmetrical components,” Electric Power Components and Systems, vol. 35, no. 1, 2007, pp. 97–118.
[27] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. on Industry Applications, vol. IA-21, no. 4, pp. 562-570, May - jun. 1985.
[28] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converter: a Survey,” IEEE Trans. on Industrial Electronics., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[29] 陳要廷,「具功率控制與低電壓穿越之三相市電併聯換流器研製」,國立台灣大學電機所碩士論文,2013。
[30] Y.-M. Chen, K.-Y. Liu, S.-K. Chiang, and Y.-R. Chang, “Bi-directional grid-tied inverter with predictive current control,” IEEE ECCE, vol., no., 2009, pp. 916-919.
[31] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications and design, 3rd edition. John Wiley and Sons Inc., 2003.
[32] M. F. Schonardie and D. C. Martins, 'Application of the dq0 transformation in the three-phase grid-connected PV systems with active and reactive power control,' IEEE International Conference on Sustainable Energy Technologies, vol., no., 2008, pp. 18-23.
[33] 姚竺君,「三相併聯型太陽光電能系統模型建立與模擬分析」,國立台灣大學電機所碩士論文,2010。
[34] B. Bahrani, S. Kenzelmann, and A. Rufer, 'Multivariable-PI-based dq current control of voltage source converters with superior axis decoupling capability,' IEEE Trans. on Industrial Electronics, vol.58, no.7, pp. 3016-3026, Jul. 2011.
[35] M. Hagiwara and H. Akagi, “An approach to regulating the DC-link voltage of a voltage-source BTB system during power line faults,” IEEE Trans. on Industry Applications, vol. 41, no. 5, pp. 1263-1271, Sep.- oct. 2005.
[36] J. Alcala, V. Cardenas, R.J. Betancourt, and J. Perez-Ramirez, “Balancing the power of transformers in low voltage distribution feeders by using the Back - to - Back power converter,” International Conference on Electrical Engineering Computing Science and Automatic Control, vol., no., 2011, pp. 1-6.
[37] Y. Lu, Z. Zhao, T. Lu, H. Fanbo, and L. Yuan, “A predictive DC voltage control scheme for back-to-back converters based on energy balance modeling,” International Conference on Electrical Machines and Systems, vol., no., 2011, pp. 1-6.
[38] M. Hagiwara and H. Akagi, “Practical methods for tuning PI controllers in the DC-link voltage loop in Back-to-Back power converters,” International Conference on Power Electronics Congress, vol., no., 2010, pp. 46-52.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57400-
dc.description.abstract本論文提出功率潮流優化控制策略,對三相背靠背(Back-to-Back; BTB)轉換器兩級間之功率潮流進行調控。本論文提出之功率潮流優化控制策略可分為電流優化調變策略及動態直流電壓調變策略兩部分。電流優化調變策略能以適當之調變電流對兩級間之功率潮流進行調整,使三相BTB轉換器之直流匯流排電壓能迅速的穩在預設之磁滯區間內。而動態直流電壓調變策略則能隨三相BTB轉換器之輸出功率的多寡,對直流匯流排電壓之磁滯區間進行調整,在輸出功率驟變時,能防止不必要的直流匯流排電壓保護觸發,或是降低匯流排電容值。本論文採用的三相BTB轉換器能做為主動式電力調節器,控制交流微電網間之功率潮流,以提升微電網之電力品質。配合本論文提出之功率潮流優化控制策略,主動式電力調節器能準確的對交流微電網間之功率潮流進行調整。最後以實測波形來驗證本論文所提出之功率潮流優化控制策略的性能表現。zh_TW
dc.description.abstractThis thesis proposes an optimal power flow control strategy to regulate the power flow of a three-phase back-to-back (BTB) converter. The proposed optimal power flow control consists of the optimal ac-line current regulation strategy and the dynamic dc-bus voltage regulation strategy. With the optimal ac-line current regulation strategy, the appropriate input current can be determined quickly to stabilize the dc-bus voltage of the BTB converter. The dynamic dc-bus voltage regulation strategy can alter the reference of the dc-bus voltage to prevent triggering of the DC voltage protection mechanism when an abrupt power change of the BTB converter occurs. The proposed BTB converter can be adopted as an active power conditioner to improve the power quality of the AC micro-grids. The active power conditioner with the proposed optimal power flow control strategy can regulate the power flow between different AC micro-grids accurately. Finally, experimental results measured from a prototype circuit are presented to demonstrate the performances of the optimal power flow control strategy.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:44:33Z (GMT). No. of bitstreams: 1
ntu-103-R01921018-1.pdf: 5854575 bytes, checksum: d8a7a1338bd4ff72aed1bd0215070c45 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 #
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究動機與背景 1
1-2 文獻回顧 2
1-3 論文大綱 3
第二章 主動式電力調節器簡介 4
2-1 微電網之介紹 4
2-1-1 微電網之構成及特點 4
2-1-2 微電網之脆弱性及穩定性 5
2-2 實虛功補償之運作 6
2-2-1 實功補償之策略 6
2-2-2 虛功補償之策略 7
2-3 主動式電力調節器 8
2-3-1 三相換流器之架構介紹 8
2-3-2 主動式電力調節器之電力級架構介紹 10
2-3-3 電流控制法則 12
第三章 主動式電力調節器之架構與控制原理 16
3-1 三相主動式電力調節器 16
3-1-1 電力級架構及其前後級之運作 16
3-1-2 三相正弦脈寬調變切換技術 17
3-1-3 三相主動式電力調節器數學模型 19
3-2 功率潮流控制架構 21
3-2-1 三相座標之直交軸轉換 21
3-2-2 實虛功補償策略 25
3-3 直流匯流排之控制策略 27
3-3-1 電流調變控制策略 28
3-3-2 功率潮流優化控制策略 29
第四章 系統軟硬體電路 34
4-1 電力級硬體電路 34
4-1-1 濾波電感設計 35
4-1-2 直流匯流排電容設計 35
4-2 控制級硬體電路 37
4-2-1 微控制器 37
4-2-2 微控制器之周邊與回授電路設計 38
4-2-3 電壓與電流偵測電路設計 43
4-3 系統控制之流程圖 46
第五章 硬體實作與測試波形 56
5-1 實虛功補償功能之測試 57
5-1-1 實功補償測試 59
5-1-2 虛功補償測試 61
5-1-2 實虛功補償測試 63
5-2 功率潮流優化控制策略之測試 65
5-2-1 電流優化調變測試 65
5-2-2 動態直流電壓調變測試 69
5-3 燒機測試結果 74
5-4 轉換效率與電流總諧波失真量測 76
第六章 結論與未來展望 80
6-1 結論 80
6-2 未來研究方向 81
參考文獻 82
dc.language.isozh-TW
dc.subject主動式電力調節器zh_TW
dc.subject功率潮流zh_TW
dc.subject微電網zh_TW
dc.subject背靠背轉換器zh_TW
dc.subjectback-to-back converteren
dc.subjectAC micro-griden
dc.subjectactive power conditioneren
dc.subjectpower flowen
dc.title具功率潮流優化控制之主動式電力調節器研製zh_TW
dc.titleDesign and Implementation of an Active Power Conditioner with Optimal Power Flow Control Strategyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴炎生(Yen-Shin Lai),羅有綱(Yu-Kang Lo),陳德玉(Dan Chen)
dc.subject.keyword微電網,背靠背轉換器,主動式電力調節器,功率潮流,zh_TW
dc.subject.keywordAC micro-grid,back-to-back converter,active power conditioner,power flow,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved