Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorYi-Chen Chenen
dc.contributor.author陳怡臻zh_TW
dc.date.accessioned2021-06-16T06:44:00Z-
dc.date.available2016-08-05
dc.date.copyright2014-08-05
dc.date.issued2014
dc.date.submitted2014-07-28
dc.identifier.citation[1] J. Jang and S. S. Lee, 'Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,' Sensors and Actuators A: Physical, vol. 80, pp. 84-89, 2000.
[2] R. Linnemann, P. Woias, C.-D. Senfft, and J. Ditterich, 'A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases,' in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on, 1998, pp. 532-537.
[3] W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, 'Thin-film shape-memory alloy actuated micropumps,' Microelectromechanical Systems, Journal of, vol. 7, pp. 245-251, 1998.
[4] M. Huff, J. Gilbert, and M. Schmidt, 'Flow characteristics of a pressure-balanced microvalve,' in Proc. Transducers, 1993, pp. 98-101.
[5] T. S. Lammerink, M. Elwenspoek, and J. H. Fluitman, 'Integrated micro-liquid dosing system,' in Micro Electro Mechanical Systems, 1993, MEMS'93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE., 1993, pp. 254-259.
[6] Y. Yang, Z. Zhou, X. Ye, and X. Jiang, 'Bimetallic thermally actuated micropump,' in The 1996 ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA, USA, 11/17-22/96, 1996, pp. 351-354.
[7] N. Tesla, 'Valvular conduit,' 1920.
[8] E. Stemme and G. Stemme, 'A valveless diffuser/nozzle-based fluid pump,' Sensors and Actuators A: physical, vol. 39, pp. 159-167, 1993.
[9] M. S. T. Gerlach, and H. Wurmus, 'A new micropump principle of the reciprocation type using pyramidic micro flow channels as passive valves,' Journal of Micromechanics and Microengineering, vol. 5, pp. 199-201, 1995.
[10] T. Gerlach and H. Wurmus, 'Working principle and performance of the dynamic micropump,' Sensors and Actuators A: Physical, vol. 50, pp. 135-140, 1995.
[11] A. Olsson, G. Stemme, and E. Stemme, 'Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,' Sensors and Actuators A: Physical, vol. 84, pp. 165-175, 2000.
[12] A. Olsson, G. Stemme, and E. Stemme, 'A valve-less planar fluid pump with two pump chambers,' Sensors and Actuators A: Physical, vol. 47, pp. 549-556, 1995.
[13] N.-T. Nguyen and X. Huang, 'Miniature valveless pumps based on printed circuit board technique,' Sensors and Actuators A: Physical, vol. 88, pp. 104-111, 2001.
[14] C. Yang, M. Tien, J. Lo, and U. Lei, 'Numerical study of a valve-less micro-pump based on asymmetric obstacles,' in The 22nd CSME Conference, pp. 25-26.
[15] M. Schluter, U. Kampmeyer, I. Tahhan, and H. Lilienhof, 'A modular structured, planar micro pump with no moving part (NMP) valve for fluid handling in microanalysis systems,' in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, 2002, pp. 500-503.
[16] 吳朗, '電子陶瓷-壓電,' 全欣出版社, 台北市松山區南京東路五段202號10樓之2, pp. 7, 8, 220, 1994.
[17] J. Curie and P. Curie, 'Development by pressure of polar electricity in hemihedral crystals with inclined faces,' Bull. soc. min. de France, vol. 3, p. 90, 1880.
[18] W. G. Hankel, '“Piezoelectric”Applied Sciences,' p. 457, 1881.
[19] C.-K. Lee, Piezoelectric laminates for torsional and bending modal control: theory and experiment: Cornell University, May, 1987.
[20] C. K. Lee, W. W. Chiang, and T. O’Sullivan, 'Piezoelectric modal sensor/actuator pairs for critical active damping vibration control,' The Journal of the Acoustical Society of America, vol. 90, pp. 374-384, 1991.
[21] W. P. Mason, 'Electromechanical Transducers and Wave Filters (2nd edn.)Van Nostrand Reinhold,' 1948.
[22] K. M. Kadish, K. M. Smith, and R. Guilard, The porphyrin handbook: Elsevier, 1999.
[23] K. Y. Law, 'Organic photoconductive materials: recent trends and developments,' Chemical Reviews, vol. 93, pp. 449-486, 1993.
[24] T. Saito, W. Sisk, T. Kobayashi, S. Suzuki, and T. Iwayanagi, 'Photocarrier generation processes of phthalocyanines studied by photocurrent and electroabsorption measurements,' The Journal of Physical Chemistry, vol. 97, pp. 8026-8031, 1993.
[25] W. Hiller, J. Strahle, W. Kobel, and M. Hanack, 'Polymorphie, Leitfahigkeit und Kristallstrukturen von Oxo-phthalocyaninato-titan (IV),' Zeitschrift fur Kristallographie-Crystalline Materials, vol. 159, pp. 173-184, 1982.
[26] K. Oka, O. Okada, and K. Nukada, 'Study of the crystal structure of titanylphthalocyanine by Rietveld analysis and intermolecular energy minimization method,' Japanese journal of applied physics, vol. 31, p. 2181, 1992.
[27] S. Yamaguchi and Y. Sasaki, 'Effect of water on primary photocarrier-generation process in Y-form titanyl phthalocyanine,' The Journal of Physical Chemistry B, vol. 104, pp. 9225-9229, 2000.
[28] L. Ling, 'The Applications of Electric Charge Generating Material (TiOPc) and Electric Charge Transporting Material (TPD) on Organic Photo Conductor Drum,' Chemistry, vol. 21, pp. 575-584, 2003.
[29] Z. D. Popovic and A.-m. Hor, 'Photoconductivity Studies of Titanyl Phthaloc yanine,' Molecular Crystals and Liquid Crystals, vol. 228, pp. 75-80, 1993.
[30] J. Noolandi and K. Hong, 'Theory of photogeneration and fluorescence quenching,' The Journal of Chemical Physics, vol. 70, pp. 3230-3236, 1979.
[31] 邱碧秀 and 國立編譯館, 電子陶瓷材料: 徐氏基金會, 1989.
[32] R. W. Fox and S. Kline, 'Flow regimes in curved subsonic diffusers,' Journal of Fluids Engineering, vol. 84, pp. 303-312, 1962.
[33] 徐佑銘, '以表面張力為驅動系統之微流體晶片研製,' 南臺科技大學機械工程系碩士論文, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57386-
dc.description.abstract本論文嘗試以光學場調制力學場能力的複合材料作為致動器,應用在壓電式無閥門微幫浦(Valveless micropump)上,目的為以使用光學場調控力學場的方式,達到改變空間中的動態流率(Dynamic flow rate)。該複合材料是透過感光導電材料TiOPc (Titanyl Phthalocyanine)/copolymer薄膜以及蜂鳴片壓電材料PZT (Lead Zirconate Titanate)來製作。本文針對感光導電材料TiOPc薄膜做了詳細的電學阻抗分析實驗,以精密阻抗分析儀(Agilent 4294A)進行量測探討其照光前後阻抗之變化及電學特性。文中探討改變操作電壓、頻率及擴散器開口角度(2θ)的參數,比較光調控無閥式微幫浦照光前後之淨流量差異。
我們所製作出的無閥式微幫浦在驅動電壓為100V、頻率為600Hz,開口角度θ為10°時能產生的最大體積流率為95.33μL/min,在此條件下進行光調控無閥式微幫浦空間中動態流率及淨流量的探討。而光調控無閥式微幫浦在驅動電壓為100V、頻率為600Hz,開口角度θ為10°時照光前後產生的最大體積流率從6.09μL/min增加到19.62μL/min。在本研究中,我們發現可以透過不同照光區域,改變光調控無閥式微幫浦在空間中的動態流率,輔以其他規劃中的研究,或可運用前述光壓電材料的特性與其在類同於無閥門微幫浦的初步應用架構來抑制微幫浦的回流。
zh_TW
dc.description.abstractIn this work, we intended to change the dynamic flow rate of valveless micropump by developing a new smart composite material which is able to construct an actuator that can spatially modulated by optical means. The smart opto-piezo composite material is composed of photoconductive material TiOPc and piezoelectric material PZT. Spatial optical modulation in an opto-piezo composite mentioned above means modulating a force field of the actuator by changing the light field instead of changing the spatial distribution of the electrical field. To enhance the effect of modulating a force field by using the light field, the electrical impedance of TiOPc/copolymer thin film was measured by Agilent 4294A Precision Impedance Analyzer to investigate the impedance and electrical characteristics change before and after the external light illumination. We analyzed the relationship between the parameters of driving bias, frequency and diffuser angle so as to compare the flow rate difference of valveless micropump after illumination.
According to the experimental results of flow rate of valveless micropump, the maximum flow rate was 95.33μL/min under the condition of driving bias 100V, frequency 600Hz and diffuser angle 10°. Furthermore, the maximum flow rate of optical-modulated valveless micropump increased from 6.09μL/min to 19.62μL/min, and the ability of spatial dynamic flow rate modulation was confirmed by illuminated different area of valveless micropump. Coupling these preliminary results with some future works, return flow typically associated with the valveless micropump can potentially be further reduced in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:44:00Z (GMT). No. of bitstreams: 1
ntu-103-R01525024-1.pdf: 3902397 bytes, checksum: 86158b69a77b5e206c6491b554746117 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xii
Chapter 1 緒論 1
1.1 研究背景及動機 1
1.2 文獻回顧 1
1.2.1 微幫浦之介紹 1
1.2.2 無動件閥之介紹 5
1.2.3 無閥式微幫浦工作原理 8
1.3 論文架構 9
Chapter 2 理論基礎 10
2.1 壓電簡介 10
2.1.1 壓電材料特性 10
2.1.2 壓電本構方程式 12
2.2 TiOPc有機感光材料 18
2.2.1 TiOPc感光導電特性 19
2.2.2 TiOPc薄膜電學阻抗量測原理及實驗架構 24
2.2.3 TiOPc等效電路分析 28
2.3 流量理論分析 30
2.3.1 流場統御方程式 34
2.3.2 無活動元件閥流場重要參數 34
2.3.3 流量有限元素模擬與分析 36
Chapter 3 光調控無閥門式微幫浦製作及實驗設備 40
3.1 無閥門式微幫浦之設計 40
3.1.1 噴嘴與擴散器之設計 40
3.1.2 壓電致動器之設計 42
3.2 微幫浦相關製程介紹 44
3.2.1 矽晶圓微流道模組製作 45
3.2.2 微流道之製作 51
3.2.3 微流道之封裝接合製程 52
3.3 實驗儀器與設備架設 55
3.3.1 壓電片振動位移量測實驗架設 58
3.3.2 無閥式微幫浦空間動態流率量測系統 61
3.3.3 無閥式微幫浦流率量測系統 62
Chapter 4 實驗結果與討論 65
4.1 壓電蜂鳴片塗佈TiOPc薄膜阻抗量測結果 65
4.1.1 TiOPc薄膜阻抗量測結果 71
4.2 壓電片振動量測結果 76
4.3 微幫浦空間動態流率量測結果 82
4.4 微幫浦淨流量量測結果 85
Chapter 5 結論與未來展望 93
5.1 結論 93
5.2 未來展望 94
REFERENCE 95
dc.language.isozh-TW
dc.subject感光導電材料zh_TW
dc.subject擴張角zh_TW
dc.subject壓電材料zh_TW
dc.subject無閥式微幫浦zh_TW
dc.subject電阻抗zh_TW
dc.subjectpiezoelectric materialen
dc.subjectdiffuser angleen
dc.subjectvalveless micropumpen
dc.subjectelectrical impedanceen
dc.subjectphotoconductive materialen
dc.title光壓電材料在無閥門式微幫浦之應用zh_TW
dc.titleApplication of opto-piezoelectric material in valveless micropumpen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文中(Wen-Jong Wu),饒達仁(Da-Jeng Yao),謝志文(Chih-Wen Hsieh),鄭志強(Chih-Chiang Cheng)
dc.subject.keyword壓電材料,感光導電材料,電阻抗,無閥式微幫浦,擴張角,zh_TW
dc.subject.keywordpiezoelectric material,photoconductive material,electrical impedance,valveless micropump,diffuser angle,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved