請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57373
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛宇甯 | |
dc.contributor.author | Wun-Yuan Lee | en |
dc.contributor.author | 李文淵 | zh_TW |
dc.date.accessioned | 2021-06-16T06:43:31Z | - |
dc.date.available | 2024-06-10 | |
dc.date.copyright | 2014-08-01 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-28 | |
dc.identifier.citation | 參考文獻
1. ASTM D2166-06, “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ” ASTM International, West Conshohocken, PA, USA. 2. ASTM D2216-05, “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,” ASTM International, West Conshohocken, PA, USA. 3. ASTM D3080-04, “Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions,” ASTM International, West Conshohocken, PA, USA. 4. ASTM D422-63, “Standard Test Method for Particle-Size Analysis of Soils,” ASTM International, West Conshohocken, PA, USA. 5. ASTM D4253-00, “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, ” ASTM International, West Conshohocken, PA, USA. 6. ASTM D4254-00, “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density,” ASTM International, West Conshohocken, PA, USA. 7. ASTM D4318-05, “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” ASTM International, West Conshohocken, PA, USA. 8. ASTM D4767-11, “Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils,” ASTM International, West Conshohocken,PA, USA. 9. ASTM D6836-02, “Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge,” ASTM International, West Conshohocken, PA, USA. 10. ASTM D698-07, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” ASTM International, West Conshohocken, PA, USA. 11. ASTM D854-06, “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” ASTM International, West Conshohocken, PA, USA. 12. Bishop, A. W., 1954, “The use of pore water coefficients in practice,” Geotechnique, Vol. 4, No. 4, pp. 148-152. 13. Bandyopadhyay, K., and Bhattacharjee, S., 2010, “Indirect tensile strength test of stabilized fly ash,” Indian Geotechnical Conference, pp. 279-282. 14. Carmona, S., 2009, “Effect of specimen size and loading conditions on indirect tensile test results,” Materiales De Construccion, Vol. 59, No. 294, pp. 7-18. 15. Chen, W. F., 1970, “Double Punch Test for Tensile Strength of Concrete,” Journal of the American Concrete Institute, Vol. 67, pp. 993-995. 16. Chen, W. F., 1975, “Limit analysis and soil plasticity,” New York: Elsevier Scientific Pub, pp. 501-541. 17. Consoli, N. C., Cruz, R. C., Floss, M. F., and Festugato, L., 2010, “Parameters controlling tensile and compressive strength of artificially cemented sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 5, pp. 759-763. 18. Consoli, N. C., Prietto, P. D. M., Carraro, J. A. H., and Heineck, K. S., 2001, “Behavior of compacted soil-fly ash-carbide lime mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 9, pp. 774-782. 19. Consoli, N. C., Cruz, R. C., Floss, M. F., and Festugato, L., 2010, “Parameters controlling tensile and compressive strength of artificially cemented sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 5, pp. 759-763. 20. Das, B. M., and Dass, R. N., 1995, “Lightly cemented sand in tension and compression,” Geotechnical and Geological Engineering, Vol. 13, No. 3, pp. 169-177. 21. Fahimifar, A., and Malekpour, M., 2012, “Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts,” Bulletin of Engineering Geology and the Environment, Vol. 71, No. 2, pp. 269-283. 22. Fang, H. Y., and Chen, W. F., 1972, “Further study of double punch test for tensile strength of soils,” Southeast Asian Conference on Soil Engineering, 3rd, pp. 211-215. 23. Fang, H. Y., and Fernandez, J., 1981, “Determination of tensile strength of soils by unconfined-penetration test,” ASTM STP 740, pp. 130–144. 24. Fredlund, D.G., and Morgenstern, N.R., 1977, “Stress state variables for unsaturated soils,” Journal of Geotechnical Engineering, Vol. 103, No. 5, pp. 447-456. 25. Fredlund, D. G., and Morgenstern, N. R., 1978, “The shear strength of unsaturaed soils,” Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321. 26. Fredlund, D. G., Xing, A., and Huang, S., 1994, “Predicting the permeability function for unsaturated soils using the soil-water characteristic curve,” Canadian Geotechnical Journal, Vol. 31, No. 3, pp. 521-532. 27. Hector, C., 1993, “Factors affecting the tensile strength of soil aggregates,” Soil and Tillage Research, Vol. 28, No. 1, pp. 15-25. 28. Heibrock, G., Zeh, R. M., and Witt, K. J., 2005, “Tensile strength of compacted clays,” Unsaturated Soils: Experimental Studies, Vol. 93, pp. 395-412. 29. Ibarra, S. Y., McKyes, E., and Broughton, R. S., 2005, “Measurement of tensile strength of unsaturated sandy loam soil,” Soil & Tillage Research, Vol. 81, No. 1, pp. 15-23. 30. Kim, T. H., and Hwang, C. S., 2003, “Modeling of tensile strength on moist granular earth material at low water content,” Engineering Geology, Vol. 69, No. 3-4, pp. 233-244. 31. Kim, T. H., Kim, C. K., Jung, S. J., and Lee, J. H., 2007, “Tensile strength characteristics of contaminated and compacted sand-bentonite mixtures,” Environmental Geology, Vol. 52, No. 4, pp. 653-661. 32. Kim, T. H., Kim, T. H., Kang, G. C., and Ge, L., 2012, “Factors influencing crack-induced tensile strength of compacted soil,” Journal of Materials in Civil Engineering, Vol. 24, No. 3, pp. 315-320. 33. Krahn, J., and Fredlund, D. G., 1972, “On total, matric and osmotic suction,” Soil Science, Vol. 114, No. 5, pp. 339-348. 34. Li, X.J., Liu, Y.R., Jiang, L.H., and Tang, Y.C., 2011, “Determination of tensile strength of compacted loess by double punch test,” Advanced Materials Research, Vol. 194-196, pp. 1176-1179. 35. Lu, N., 2008, “Is Matric Suction a Stress Variable?,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.7, pp899-905 36. Lu, N., and Likos, W. J., 2006, “Suction stress characteristic curve for unsaturated soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 2, pp. 131-142. 37. Lu, N., Godt, Jonathan W., and Wu, David T., 2010, “A closed-form equation for effective stress in unsaturated soil,” Water Resources Research, Vol. 46, W05515 38. Lu, N., Kim, T.H., Sture, S., and Likos, W.J., 2009, “Tensile Strength of Unsaturated Sand,” Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/2009EM.1943-7889.0000054 39. Mesbah, A., Morel, J. C., Walker, P., and Ghavami, K., 2004, “Development of a direct tensile test for compacted earth blocks reinforced with natural fibers,” Journal of Materials in Civil Engineering, Vol. 16, No. 1, pp. 95-98. 40. Nahlawi, H., Chakrabarti, S., and Kodikara, J., 2004, “A direct tensile strength testing method for unsaturated geomaterials,” Geotechnical Testing Journal, Vol. 27, No. 4, pp. 356-361. 41. Ramanathan, B., and Raman, V., 1974, “Spilt tensile strength of cohesive soils,” Soils and Foundations, Vol. 14, No. 1, pp. 71-76. 42. Tamrakar, S. B., Mitachi, T., and Toyosawa, Y., 2007, “Measurement of soil tensile strength and factors affecting its measurements,” Soils and Foundations, Vol. 47, No. 5, pp. 911-918. 43. Tang, G. X., and Graham, J., 2000, “A method for testing tensile strength in unsaturated soils,” Geotechnical Testing Journal, Vol. 23, No. 3, pp. 377-382. 44. 何冠德 (2013),『低黏性砂土張力強度之探討』,碩士論文,國立台灣大學土木工程學系。 45. 林鴻彰 (2008),『不飽和土壤邊坡基質吸力與位移之監測及邊坡穩定分析』,碩士論文,國立台灣科技大學營建工程學系。 46. 陳尚奕 (2009),『粒徑分析狀況對不飽和崩積土壤吸力之研究』,碩士論文,國立台灣科技大學營建工程學系。 47. 楊樹榮 (2005),『路基土壤之不飽和吸力特性及反覆載重下之力學行為』, A. 博士論文,國立中央大學土木工程學系。 B. 碩士論文,國立台灣科技大學營建工程學系。 48. 鄭鈺諠 (2010),『不飽和夯實土壤之動態性質』,碩士論文,國立中央大學土木工程學系。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57373 | - |
dc.description.abstract | 在過去學者的研究當中,有許多方法可以決定土壤的張力強度,依據是否可直接量測拉力與否,可分為直接法與間接法。直接法主要是以直接拉力試驗 ( direct tensile test ) 為主,且可再分為水平或垂直施加拉力;而間接法常採用的方法有,例如 : 劈裂試驗 ( split tensile test ) 、無圍壓縮貫入試驗 ( unconfined penetration test ) 或稱為雙貫入棒試驗 ( double punch test )。
本研究以複合驗證法求取低黏性砂土的張力強度,採用高嶺土與越南石英砂土混合之複合土壤 SC,分別進行兩大部分試驗,第一部份試驗,選定土樣 SC (S-石英砂 80% 與 C-高嶺土 20%) 為試驗土樣,主要為土壤張力強度間接法之相關試驗,分別依序進行 : 直接剪力試驗、無圍壓縮試驗與無圍壓縮貫入試驗;第二部份試驗,選定土樣 SC (S-石英砂 80% 與 C-高嶺土 20%) 為試驗土樣,主要為土壤張力強度直接法試驗及壓力平板試驗。 在不同含水量下,直接張力試驗之有效張力強度的相對偏差很小,故含水量並不會影響不飽和土壤之有效張力強度,且由 Lu et al. (2006、2010) 所提出的的不飽和土壤有效應力架構計算直接張力試驗之有效張力強度,其值在含水量 w = 9%、11% 時相當接近,代表直接張力試驗有很高之準確性。 | zh_TW |
dc.description.abstract | There are many methods of determining the tensile strength of soil. Depending on whether the specimen can be directly pulled in tension, it can be categorized into direct and indirect methods. In the direct methods, the specimen can be horizontally or vertically loaded. In the indirect methods, the split tensile test and the unconfined penetration test (double punch test) are often used.
In this study, compacted clayed sandy specimens (with 80% of sand and 20% of caly by weight) were prepared for a series of the tests. The first part of tests is related to the indirect test of soil tensile strength, including direct shear test, unconfined compression test, and unconfined penetration test. The second part of tests is related to the direct test of soil tensile strength, including direct tension test and pressure plate test. The direct tension test of the effective stress varies slightly at different water contents, indicating the effective tensile strength of unsaturated soil was unaffected by the water contents. The direct tension test of the effective stress is quite close when the water content is at 9 and 11 percent, which suggests that the direct tension test be quite accurate in determining the tensile strength of lightly cemented sand. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:43:31Z (GMT). No. of bitstreams: 1 ntu-103-R01521127-1.pdf: 12748026 bytes, checksum: c90d108acd482f03ac74dc88913a31d5 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目 錄
口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 目 錄 V 表目錄 VIII 圖目錄 X 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究方法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1 土壤之張力強度試驗 5 2.1.1 直接法 5 2.1.2 間接法 8 2.2 無圍壓貫入試驗 11 2.3 不飽和土壤 13 2.3.1 不飽和土壤之吸力理論 14 2.3.2 土壤之水分特性曲線 16 2.3.3 不飽和土壤有效應力架構 17 2.4 小結 20 第三章 試驗材料與研究規劃 50 3.1 基本物理性質試驗 50 3.1.1 含水量試驗 52 3.1.2 比重試驗 52 3.1.3 相對密度試驗 52 3.1.4 粒徑分析試驗 52 3.1.5 阿太堡限度試驗 53 3.2 試驗規劃 53 3.2.1 標準夯實試驗 54 3.2.2 直接剪力試驗 55 3.2.3 無圍壓縮試驗 57 3.2.4 無圍壓貫入試驗 59 3.2.5 壓力平板試驗 61 3.3 直接張力試驗 63 第四章 試驗結果 85 4.1 第一部分試驗 85 4.1.1 標準夯實試驗 85 4.1.2 直接剪力試驗 86 4.1.3 無圍壓縮試驗 87 4.1.4 無圍壓貫入試驗 88 4.2 第二部分試驗 89 4.2.1 直接張力試驗 89 4.2.2 壓力平板試驗 90 第五章 討論與分析 108 5.1 無圍壓貫入試驗結果與討論 108 5.1.1 疊代法之適用性 108 5.1.2 疊代法的瑕疵 110 5.1.3 經驗法與疊代法之比較 111 5.1.4 含水量對無圍壓貫入試驗之影響 112 5.2 直接張力試驗結果與討論 113 5.2.1 滑軌摩擦力對直接張力試驗之影響 113 5.2.2 速率對直接張力試驗之影響 114 5.2.3 含水量對直接張力試驗之影響 115 5.3 不飽和土壤之有效張力強度 116 5.3.1 無圍壓貫入試驗之有效張力強度 116 5.3.2 不飽和破壞包絡線之有效張力強度 117 5.3.3 直接張力試驗之有效張力強度 118 5.3.4 綜合討論 118 第六章 結論與建議 127 6.1 無圍壓貫入試驗結論 127 6.2 不飽和土壤之有效張力強度結論 128 6.3 直接張力試驗結論 129 6.4 建議 129 參考文獻 132 附錄 137 附錄1. 無圍壓貫入試驗-極限分析理論推導 137 附錄2. 無圍壓貫入試驗儀器校正數據 139 附錄3. 直接張力試驗儀器校正數據 140 | |
dc.language.iso | zh-TW | |
dc.title | 低黏性砂土張力強度之驗證 | zh_TW |
dc.title | Verification of Tensile Strength of Lightly
Cemented Sand | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 翁作新,郭安妮 | |
dc.subject.keyword | 不飽和土壤,吸應力,基質吸力,張力強度,無圍壓縮貫入試驗, | zh_TW |
dc.subject.keyword | unsaturated soil,suction stress,matrix suction,tensile strength,unconfined penetration test, | en |
dc.relation.page | 140 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 12.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。