請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57359完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
| dc.contributor.author | Shih-Yao Lin | en |
| dc.contributor.author | 林詩堯 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:42:59Z | - |
| dc.date.available | 2019-08-13 | |
| dc.date.copyright | 2014-08-13 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-28 | |
| dc.identifier.citation | 1 Bonn, D., Eggers, J., Indekeu, J., Meunier, J. and Rolley, E. Wetting and spreading. Reviews of Modern Physics 81, 739-805 (2009).
2 Good, R. J. Contact angle, wetting, and adhesion: a critical review. Journal of Adhesion Science and Technology 6, 1269-1302 (1992). 3 Yu, Y., Zhu, H., Frantz, J. M., Reding, M. E., Chan, K. C. and Ozkan, H. E. Evaporation and coverage area of pesticide droplets on hairy and waxy leaves. Biosystems Engineering 104, 324-334 (2009). 4 Park, J. and Moon, J. Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing. Langmuir 22, 3506-3513 (2006). 5 Picknett, R. G. and Bexon, R. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61, 336-350 (1977). 6 Bourges-Monnier, C. and Shanahan, M. E. R. Influence of Evaporation on Contact Angle. Langmuir 11, 2820-2829 (1995). 7 McHale, G., Rowan, S. M., Newton, M. I. and Banerjee, M. K. Evaporation and the Wetting of a Low-Energy Solid Surface. The Journal of Physical Chemistry B 102, 1964-1967 (1998). 8 Rowan, S. M., McHale, G., Newton, M. I. and Toorneman, M. Evaporation of Microdroplets of Three Alcohols. The Journal of Physical Chemistry B 101, 1265-1267 (1997). 9 Rowan, S. M., Newton, M. I. and McHale, G. Evaporation of Microdroplets and the Wetting of Solid Surfaces. The Journal of Physical Chemistry 99, 13268-13271 (1995). 10 Erbil, H. Y., McHale, G., Rowan, S. M. and Newton, M. I. Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation. Langmuir 15, 7378-7385 (1999). 11 McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I. and Erbil, H. Y. Analysis of Droplet Evaporation on a Superhydrophobic Surface. Langmuir 21, 11053-11060 (2005). 12 Erbil, H. Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Advances in colloid and interface science 170, 67-86 (2012). 13 Schonfeld, F., Graf, K.-H., Hardt, S. and Butt, H.-J. Evaporation dynamics of sessile liquid drops in still air with constant contact radius. International Journal of Heat and Mass Transfer 51, 3696-3699 (2008). 14 Kulinich, S. A. and Farzaneh, M. Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Applied Surface Science 255, 4056-4060 (2009). 15 Chuang, Y.-C., Chu, C.-K., Lin, S.-Y. and Chen, L.-J. Evaporation of water droplets on soft patterned surfaces. Soft Matter 10, 3394-3403 (2014). 16 Pu, G. and Severtson, S. J. Water Evaporation on Highly Viscoelastic Polymer Surfaces. Langmuir 28, 10007-10014 (2012). 17 Lopes, M. C. and Bonaccurso, E. Evaporation control of sessile water drops by soft viscoelastic surfaces. Soft Matter 8, 7875-7881 (2012). 18 Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. and Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827-829 (1997). 19 Deegan, R. D. Pattern formation in drying drops. Phys. Rev. E 61, 475-485 (2000). 20 Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. and Witten, T. A. Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756-765 (2000). 21 Fischer, B. J. Particle Convection in an Evaporating Colloidal Droplet. Langmuir 18, 60-67 (2001). 22 Hu, H. and Larson, R. G. Evaporation of a Sessile Droplet on a Substrate. The Journal of Physical Chemistry B 106, 1334-1344 (2002). 23 Hu, H. and Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090-7094 (2006). 24 Maenosono, S., Dushkin, C. D., Saita, S. and Yamaguchi, Y. Growth of a Semiconductor Nanoparticle Ring during the Drying of a Suspension Droplet. Langmuir 15, 957-965 (1999). 25 Chon, C. H., Paik, S., Tipton, J. B. and Kihm, K. D. Effect of Nanoparticle Sizes and Number Densities on the Evaporation and Dryout Characteristics for Strongly Pinned Nanofluid Droplets. Langmuir 23, 2953-2960 (2006). 26 Shen, X. Y., Ho, C. M. and Wong, T. S. Minimal Size of Coffee Ring Structure. J. Phys. Chem. B 114, 5269-5274 (2010). 27 Orejon, D., Sefiane, K. and Shanahan, M. E. R. Stick–Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration. Langmuir 27, 12834-12843 (2011). 28 Yunker, P. J., Still, T., Lohr, M. A. and Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308-311 (2011). 29 Brutin, D. Influence of relative humidity and nano-particle concentration on pattern formation and evaporation rate of pinned drying drops of nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 429, 112-120 (2013). 30 Chhasatia, V. H., Joshi, A. S. and Sun, Y. Effect of relative humidity on contact angle and particle deposition morphology of an evaporating colloidal drop. Applied Physics Letters 97, - (2010). 31 Uno, K., Hayashi, K., Hayashi, T., Ito, K. and Kitano, H. Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces. Colloid Polym Sci 276, 810-815 (1998). 32 Nguyen, T. A. H., Hampton, M. A. and Nguyen, A. V. Evaporation of Nanoparticle Droplets on Smooth Hydrophobic Surfaces: The Inner Coffee Ring Deposits. The Journal of Physical Chemistry C 117, 4707-4716 (2013). 33 Watanabe, S., Inukai, K., Mizuta, S. and Miyahara, M. T. Mechanism for Stripe Pattern Formation on Hydrophilic Surfaces by Using Convective Self-Assembly. Langmuir 25, 7287-7295 (2009). 34 Ko, H., Peleshanko, S. and Tsukruk, V. V. Combing and Bending of Carbon Nanotube Arrays with Confined Microfluidic Flow on Patterned Surfaces. The Journal of Physical Chemistry B 108, 4385-4393 (2004). 35 Wang, Y., Maspoch, D., Zou, S., Schatz, G. C., Smalley, R. E. and Mirkin, C. A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proceedings of the National Academy of Sciences of the United States of America 103, 2026-2031 (2006). 36 Drelich, J., Miller, J. D., Kumar, A. and Whitesides, G. M. Wetting characteristics of liquid drops at heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 93, 1-13 (1994). 37 Pompe, T. and Herminghaus, S. Three-Phase Contact Line Energetics from Nanoscale Liquid Surface Topographies. Phys. Rev. Lett. 85, 1930-1933 (2000). 38 Kooij, E. S., Jansen, H. P., Bliznyuk, O., Poelsema, B. and Zandvliet, H. J. W. Directional wetting on chemically patterned substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 413, 328-333 (2012). 39 Rodriguez-Valverde, M. A., Ruiz-Cabello, F. J. M. and Cabrerizo-Vilchez, M. A. Wetting on axially-patterned heterogeneous surfaces. Advances in Colloid and Interface Science 138, 84-100 (2008). 40 Dettre, R. H. and Johnson, R. E. in Contact Angle, Wettability, and Adhesion Vol. 43 Advances in Chemistry Ch. 8, 136-144 (AMERICAN CHEMICAL SOCIETY, 1964). 41 Wenzel, R. N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 28, 988-994 (1936). 42 Cassie, A. B. D. and Baxter, S. Wettability of porous surfaces. Transactions of the Faraday Society 40, 0546-0550 (1944). 43 Yeh, K. Y., Chen, L. J. and Chang, J. Y. Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir 24, 245-251 (2008). 44 Yeh, M. C. and Chen, L. J. A modified calibration technique for pendant drop/bubble tensiometry. Journal of the Chinese Institute of Chemical Engineers 32, 109-116 (2001). 45 Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. and Makino, K. A novel method for synthesis of silica nanoparticles. J. Colloid Interface Sci. 289, 125-131 (2005). 46 Paxson, A. T. and Varanasi, K. K. Self-similarity of contact line depinning from textured surfaces. Nature communications 4, 1492 (2013). 47 Vazquez, G., Alvarez, E. and Navaza, J. M. Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C. Journal of Chemical & Engineering Data 40, 611-614 (1995). 48 Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D. and Magdassi, S. Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature. ACS Nano 3, 3537-3542 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57359 | - |
| dc.description.abstract | 本篇研究將分為兩部分討論:第一部分是研究添加奈米粒子的水滴在化學同質性的平坦表面的揮發現象,第二部分是觀察液滴在化學異質性條紋表面的濕潤狀態與其揮發現象。
藉由在矽晶片表面接上不同官能基的自聚合單分子膜,可以改變固體表面的親疏水性。利用光學上拍與側拍的方式,比較純水滴與添加了二氧化矽奈米粒子的水滴在不同親疏水性表面的揮發現象。兩者揮發的機制大致相同:由定接觸半徑模式開始,當接觸角到達後退角,轉而進入定接觸角模式,最後進入半徑和角度皆同時下降的混合模式。兩者差異發生在揮發的末期,添加了奈米粒子的水滴,會在混合模式的過程中,產生第二次定半徑的揮發並留下環形殘跡。對於相同表面,其發生第二次定半徑時的濃度約略為定值且與起始濃度無關。此外,我們發現該濃度與表面的親疏水性有很大的關聯性。 在第二部分,我們利用微觸印刷的方式製造親疏水線條相間的化學異質性表面,並同樣藉由光學儀器,從平行與垂直條紋的視角觀察水滴在此種表面的揮發現象。兩個視角的揮發均可以觀察到定半徑、定接觸角與混合模式。但從平行方向觀察,在定接觸角模式時,可以發現角度呈現明顯且穩定的週期震盪,而半徑呈現階梯式的下降,然而在垂直方向上卻觀察不到此現象。此外,利用酒精液滴,可以觀察到三相線在此表面上扭曲的情形。我們亦嘗試將添加了二氧化矽奈米粒子的酒精滴在此表面上揮發,可以發現親水的線條上會留下奈米粒子的沉積。 | zh_TW |
| dc.description.abstract | There are two topics discussed in this study: evaporation of water droplet containing silicon dioxide nanoparticles on homogeneous surfaces with different hydrophobicities and evaporation of liquid droplet on chemically heterogeneous striped surface.
First, the evaporation mechanism of pure water droplet and water droplet containing silica nanoparticles on silicon wafer with different self-assembled-monolayers were observed and compared from top and side view in this study. The evaporation mechanism generally starts with constant contact radius mode and turns into constant contact angle mode when the receding contact angle is reached. Finally, the mechanism enters the mixed mode. The major differences of the evaporation process are an additional contact line pinning during the mixed mode and a ring-like structure left on the surface after the droplet drying. For each surface, it is found that the concentration at pinning moment is rather a constant and independent of initial concentration. Moreover, the concentration is highly related to the hydrophobicity of the surface. Second, chemically heterogeneous striped surfaces consisting of alternating and parallel hydrophobic/hydrophilic self-assembled monolayer were prepared on silicon substrate by micro-contact printing. The evaporation of a sessile droplet on the heterogeneous surface was studied by enhanced video microscopy system to record the evolution of contact angle and contact radius along two different viewing angles (normal or parallel to the stripe) in the evaporation process. At the very beginning of the evaporation process in these two viewing angles, the contact angle decreases dramatically while the radius of three phase contact line remains almost constant. Then, the angle decreases slowly while the radius decreases. It is interesting to note that the angle in the direction parallel to the stripe exhibits the stick-slip-jump phenomenon and the radius decreases with a step jump while the contact angle and radius in the direction normal to stripe decrease disorderly. In addition, the corrugation of the three phase contact line of ethanol droplet and dynamic shrinkage of contact line during evaporation are observed. Besides, in an appropriate initial concentration of ethanol-based droplet containing silica nanoparticle, a regular pattern of nanoparticles on hydrophilic lines can be observed after the droplet drying. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:42:59Z (GMT). No. of bitstreams: 1 ntu-103-R01524025-1.pdf: 3755725 bytes, checksum: c40beb71f5d43ac67157f8f9b7655a6a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 8 2.1 Contact Angle and Wetting Behavior 8 2.1.1 Young’s Equation 8 2.1.2 Contact angle for non-ideal surface 9 2.2 Evaporation 11 2.2.1 Evaporation mechanism 11 2.2.2 Evaporation rate 12 2.3 Coffee ring effect 13 CHAPTER 3. EXPERIMENTAL METHOD 18 3.1 Materials 18 3.2 Experimental Apparatuses 19 3.3 Experimental Procedure 20 3.3.1 Homogeneous SAM on silicon wafer 20 3.3.2 Preparation of PDMS stamps 21 3.3.3 Heterogeneous striped SAM on silicon wafer 21 3.3.4 Advancing/receding contact angle measurement 22 3.3.5 Silicon dioxide nanoparticle 23 3.3.6 Evaporation 24 CHAPTER 4. RESULTS AND DISCUSSION –HOMOGENEOUS SURFACE 27 4.1 Evolution of water droplet evaporation on different surfaces 28 4.2 Evolution of evaporation of a water droplet containing silicon dioxide nanoparticles on hydrophobic surfaces 30 4.3 Residual deposits of nanoparticles and the effect of nanoparticle concentration on ring formation 32 4.4 Residual deposits of nanoparticles on hydrophilic surface 35 CHAPTER 5. RESULTS AND DISCUSSION – HETEROGNEOUS SURFACE 55 5.1 Evaporation of water drop on heterogeneous striped surface 55 5.2 The variation of drop volume evaporation 60 5.3 Evaporation of ethanol drop on heterogeneous surface 61 5.4 Nanoparticle solution on heterogeneous surface 62 CHAPTER 6. CONCLUSION 76 REFERENCES 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 咖啡環 | zh_TW |
| dc.subject | 揮發 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 異質性表面 | zh_TW |
| dc.subject | heterogeneous surface. | en |
| dc.subject | contact angle | en |
| dc.subject | nanoparticle | en |
| dc.subject | evaporation | en |
| dc.subject | coffee ring | en |
| dc.title | 純液滴和含奈米粒子的液滴在同質與異質性條紋表面的揮發現象 | zh_TW |
| dc.title | Evaporation of Sessile Drops with and without Suspended Nanoparticles on Homogeneous and Heterogeneous Striped Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林析右(Shi-Yow Lin),蔡瑞瑩(Ruey-Yug Tsay),萬本儒(Ben-Zu Wan) | |
| dc.subject.keyword | 接觸角,咖啡環,揮發,奈米粒子,異質性表面, | zh_TW |
| dc.subject.keyword | contact angle,coffee ring,evaporation,nanoparticle,heterogeneous surface., | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
