請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57354完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊雅惠(Ya-Hui Chuang) | |
| dc.contributor.author | Chia-En Loh | en |
| dc.contributor.author | 羅家恩 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:42:48Z | - |
| dc.date.available | 2024-07-29 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-29 | |
| dc.identifier.citation | 1. Invernizzi, P., C. Selmi, and M.E. Gershwin, Update on primary biliary cirrhosis. Dig Liver Dis, 2010. 42(6): p. 401-8.
2. Bergasa, N.V., Pruritus and fatigue in primary biliary cirrhosis. Clin Liver Dis, 2003. 7(4): p. 879-900. 3. Lindor, K.D., et al., Primary biliary cirrhosis. Hepatology, 2009. 50(1): p. 291-308. 4. Metcalf, J.V., et al., Natural history of early primary biliary cirrhosis. Lancet, 1996. 348(9039): p. 1399-402. 5. Gershwin, M.E., et al., Primary biliary cirrhosis: an orchestrated immune response against epithelial cells. Immunol Rev, 2000. 174: p. 210-25. 6. Hirschfield, G.M. and M.E. Gershwin, The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol, 2013. 8: p. 303-30. 7. Invernizzi, P., et al., Antinuclear antibodies in primary biliary cirrhosis. Semin Liver Dis, 2005. 25(3): p. 298-310. 8. Wesierska-Gadek, J., et al., Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology, 2006. 43(5): p. 1135-44. 9. Invernizzi, P., et al., Autoantibodies against nuclear pore complexes are associated with more active and severe liver disease in primary biliary cirrhosis. J Hepatol, 2001. 34(3): p. 366-72. 10. Kaplan, M.M. and M.E. Gershwin, Primary biliary cirrhosis. N Engl J Med, 2005. 353(12): p. 1261-73. 11. Hirschfield, G.M., et al., Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med, 2009. 360(24): p. 2544-55. 12. Liu, X., et al., Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet, 2010. 42(8): p. 658-60. 13. Selmi, C. and M.E. Gershwin, Bacteria and human autoimmunity: the case of primary biliary cirrhosis. Curr Opin Rheumatol, 2004. 16(4): p. 406-10. 14. Ala, A., et al., Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites. Hepatology, 2006. 43(3): p. 525-31. 15. McNally, R.J., S. Ducker, and O.F. James, Are transient environmental agents involved in the cause of primary biliary cirrhosis? Evidence from space-time clustering analysis. Hepatology, 2009. 50(4): p. 1169-74. 16. Bruggraber, S.F., et al., Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Gastroenterology, 2003. 125(6): p. 1705-13. 17. Walden, H.R., et al., Xenobiotic incorporation into pyruvate dehydrogenase complex can occur via the exogenous lipoylation pathway. Hepatology, 2008. 48(6): p. 1874-84. 18. Burroughs, A.K., et al., Bacteriuria and primary biliary cirrhosis. Gut, 1984. 25(2): p. 133-7. 19. Gershwin, M.E., et al., Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology, 2005. 42(5): p. 1194-202. 20. Shimoda, S., et al., Molecular mimicry of mitochondrial and nuclear autoantigens in primary biliary cirrhosis. Gastroenterology, 2003. 124(7): p. 1915-25. 21. Fussey, S.P., et al., Reactivity of primary biliary cirrhosis sera with Escherichia coli dihydrolipoamide acetyltransferase (E2p): characterization of the main immunogenic region. Proc Natl Acad Sci U S A, 1990. 87(10): p. 3987-91. 22. Selmi, C., et al., Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology, 2003. 38(5): p. 1250-7. 23. Shimoda, S., et al., CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology, 2010. 51(2): p. 567-75. 24. Mao, T.K., et al., Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology, 2005. 42(4): p. 802-8. 25. Kita, H., et al., Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology, 2002. 123(4): p. 1031-43. 26. Wu, S.J., et al., Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011. 53(3): p. 915-25. 27. Shimoda, S., et al., Autoreactive T-cell responses in primary biliary cirrhosis are proinflammatory whereas those of controls are regulatory. Gastroenterology, 2006. 131(2): p. 606-18. 28. Kita, H., et al., Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest, 2002. 109(9): p. 1231-40. 29. Lan, R.Y., et al., Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology, 2006. 43(4): p. 729-37. 30. Wakabayashi, K., et al., Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008. 48(2): p. 531-40. 31. Valente, G., et al., Distribution of interferon-gamma receptor in human tissues. Eur J Immunol, 1992. 22(9): p. 2403-12. 32. Lee, M.S., et al., Sensitization to self (virus) antigen by in situ expression of murine interferon-gamma. J Clin Invest, 1995. 95(2): p. 486-92. 33. Coffman, R.L., Immunology. The origin of TH2 responses. Science, 2010. 328(5982): p. 1116-7. 34. Cohn, L., J.A. Elias, and G.L. Chupp, Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol, 2004. 22: p. 789-815. 35. Brusselle, G.G., et al., Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy, 1994. 24(1): p. 73-80. 36. Fossiez, F., et al., T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med, 1996. 183(6): p. 2593-603. 37. Cua, D.J. and C.M. Tato, Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol, 2010. 10(7): p. 479-89. 38. Eisenstein, E.M. and C.B. Williams, The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res, 2009. 65(5 Pt 2): p. 26R-31R. 39. Kunz, M. and S.M. Ibrahim, Cytokines and cytokine profiles in human autoimmune diseases and animal models of autoimmunity. Mediators Inflamm, 2009. 2009: p. 979258. 40. Kroemer, G. and C. Martinez, Cytokines and autoimmune disease. Clin Immunol Immunopathol, 1991. 61(3): p. 275-95. 41. Notkins, A.L. and A. Lernmark, Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest, 2001. 108(9): p. 1247-52. 42. Campbell, I.L., et al., IFN-gamma induces islet cell MHC antigens and enhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol, 1988. 140(4): p. 1111-6. 43. de Kozak, Y., et al., S antigen-induced experimental autoimmune uveo-retinitis in rats. Curr Eye Res, 1981. 1(6): p. 327-37. 44. Ramanathan, S., et al., Recombinant IL-4 aggravates experimental autoimmune uveoretinitis in rats. J Immunol, 1996. 157(5): p. 2209-15. 45. Racke, M.K., et al., Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med, 1994. 180(5): p. 1961-6. 46. Erb, K.J., et al., Constitutive expression of interleukin (IL)-4 in vivo causes autoimmune-type disorders in mice. J Exp Med, 1997. 185(2): p. 329-39. 47. Kagami, S., et al., Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol, 2010. 130(5): p. 1373-83. 48. Johansen, C., et al., Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol, 2009. 160(2): p. 319-24. 49. Damsker, J.M., A.M. Hansen, and R.R. Caspi, Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci, 2010. 1183: p. 211-21. 50. Luger, D., et al., Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med, 2008. 205(4): p. 799-810. 51. Su, S.B., et al., Altered chemokine profile associated with exacerbated autoimmune pathology under conditions of genetic interferon-gamma deficiency. Invest Ophthalmol Vis Sci, 2007. 48(10): p. 4616-25. 52. Korn, T., et al., Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med, 2007. 13(4): p. 423-31. 53. Dardalhon, V., et al., Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun, 2008. 31(3): p. 252-6. 54. O'Connor, R.A., et al., Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol, 2008. 181(6): p. 3750-4. 55. Van de Water, J., et al., Evidence for the targeting by 2-oxo-dehydrogenase enzymes in the T cell response of primary biliary cirrhosis. J Immunol, 1991. 146(1): p. 89-94. 56. Yamashiki, M., et al., Analysis of serum cytokine levels in primary biliary cirrhosis patients and healthy adults. J Clin Lab Anal, 1998. 12(2): p. 77-82. 57. Krams, S.M., et al., Elevations in IFN-gamma, IL-5, and IL-10 in patients with the autoimmune disease primary biliary cirrhosis: association with autoantibodies and soluble CD30. Clin Immunol Immunopathol, 1996. 80(3 Pt 1): p. 311-20. 58. Harada, K., et al., In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology, 1997. 25(4): p. 791-6. 59. Rong, G., et al., Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol, 2009. 156(2): p. 217-25. 60. Wakabayashi, K., et al., IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology, 2006. 44(5): p. 1240-9. 61. Lan, R.Y., et al., Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun, 2009. 32(1): p. 43-51. 62. Yoshida, K., et al., Deletion of interleukin-12p40 suppresses autoimmune cholangitis in dominant negative transforming growth factor beta receptor type II mice. Hepatology, 2009. 50(5): p. 1494-500. 63. Tsuda, M., et al., Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFbeta receptor type II mice. Hepatology, 2013. 57(2): p. 806-16. 64. Ando, Y., et al., The immunobiology of colitis and cholangitis in interleukin-23p19 and interleukin-17A deleted dominant negative form of transforming growth factor beta receptor type II mice. Hepatology, 2012. 56(4): p. 1418-26. 65. Cheung, A.K., et al., Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol, 1980. 33(2): p. 739-48. 66. Xiao, X., J. Li, and R.J. Samulski, Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol, 1996. 70(11): p. 8098-108. 67. McClure, C., et al., Production and titering of recombinant adeno-associated viral vectors. J Vis Exp, 2011(57): p. e3348. 68. King, D.P. and P.P. Jones, Induction of Ia and H-2 antigens on a macrophage cell line by immune interferon. J Immunol, 1983. 131(1): p. 315-8. 69. Seder, R.A., et al., The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med, 1992. 176(4): p. 1091-8. 70. Hwang, S.Y., et al., IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther, 2004. 6(2): p. R120-8. 71. Trobonjaca, Z., et al., Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells. J Immunol, 2001. 167(3): p. 1413-22. 72. Daya, S. and K.I. Berns, Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 2008. 21(4): p. 583-93. 73. Ferber, I.A., et al., Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol, 1996. 156(1): p. 5-7. 74. Gran, B., et al., IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol, 2002. 169(12): p. 7104-10. 75. Qian, C., et al., Increased IL-23 and IL-17 expression by peripheral blood cells of patients with primary biliary cirrhosis. Cytokine, 2013. 64(1): p. 172-80. 76. Yang, C.Y., et al., IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology, 2014. 59(5): p. 1944-53. 77. Vivier, E., et al., Functions of natural killer cells. Nat Immunol, 2008. 9(5): p. 503-10. 78. Margalit, M. and Y. Ilan, Induction of immune tolerance: a role for Natural killer T lymphocytes? Liver Int, 2005. 25(3): p. 501-4. 79. Yu, J., et al., Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity, 2006. 24(5): p. 575-90. 80. Luth, S., et al., Chronic inflammatory IFN-gamma signaling suppresses hepatocarcinogenesis in mice by sensitizing hepatocytes for apoptosis. Cancer Res, 2011. 71(11): p. 3763-71. 81. Shimoda, S., et al., The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol, 2012. 168(3): p. 279-84. 82. Kawata, K., et al., Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLoS One, 2013. 8(9): p. e74225. 83. Gaffen, S.L., An overview of IL-17 function and signaling. Cytokine, 2008. 43(3): p. 402-7. 84. Meng, F., et al., Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology, 2012. 143(3): p. 765-76 e1-3. 85. Tan, Z., et al., IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol, 2013. 191(4): p. 1835-44. 86. Hu, J., et al., Th17-relevant cytokines vary with sera of different ANA staining patterns. Int Immunopharmacol, 2013. 15(4): p. 679-84. 87. Nakajima, H., et al., The effect of treatment with interferon-gamma on type II collagen-induced arthritis. Clin Exp Immunol, 1990. 81(3): p. 441-5. 88. Stuart, J.M. and F.J. Dixon, Serum transfer of collagen-induced arthritis in mice. J Exp Med, 1983. 158(2): p. 378-92. 89. Momcilovic, M., et al., Kinetics of IFN-gamma and IL-17 expression and production in active experimental autoimmune encephalomyelitis in Dark Agouti rats. Neurosci Lett, 2008. 447(2-3): p. 148-52. 90. Eid, R.E., et al., Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation, 2009. 119(10): p. 1424-32. 91. Li, Q., et al., IL-17 and IFN-gamma production in peripheral blood following BCG vaccination and Mycobacterium tuberculosis infection in human. Eur Rev Med Pharmacol Sci, 2012. 16(14): p. 2029-36. 92. Ghoreschi, K., et al., Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med, 2003. 9(1): p. 40-6. 93. Wang, C., et al., Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance. Transpl Immunol, 2010. 22(3-4): p. 172-8. 94. Wynn, T.A. and L. Barron, Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis, 2010. 30(3): p. 245-57. 95. Stein, M., et al., Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med, 1992. 176(1): p. 287-92. 96. Lopez-Navarrete, G., et al., Th2-associated alternative Kupffer cell activation promotes liver fibrosis without inducing local inflammation. Int J Biol Sci, 2011. 7(9): p. 1273-86. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57354 | - |
| dc.description.abstract | 原發性膽道硬化症(primary biliary cirrhosis;PBC)為一種肝臟特異性的自體免疫疾病,其病理特徵為淋巴細胞浸潤至門脈三角區且因膽管受到破壞導致膽汁的鬱積,隨著疾病的發展最終走向肝臟衰竭。患者週邊血液之TH1、TH17細胞及IFN-γ與IL-17均較正常人高。在此研究中我們利用本實驗室已建立之xenobiotic (2-OA-OVA)-induced PBC小鼠模式探討發炎細胞激素在PBC致病之角色。首先,我們確定2-OA-OVA/α-GalCer致敏小鼠的肝臟單核細胞經CD3/CD28 抗體刺激後會產生大量的IFN-γ與IL-17,而小鼠肝臟中IFN-γ與IL-17的基因表現量也有上升的情形。接著,我們利用腺相關病毒(adeno-associated virus;AAV)做為載體將不同的細胞激素基因送入小鼠體內,同時誘發小鼠產生PBC,觀察在不同細胞激素的發炎環境下對PBC的影響。我們的結果顯示在給予AAV-mIFN-γ的2-OA-OVA/α-GalCer致敏小鼠,其肝臟中NK細胞及NKT細胞數目顯著上升。此外在不使用α-GalCer的2-OA-OVA致敏小鼠給予AAV-mIFN-γ亦發現肝臟單核細胞數、NK細胞與NKT細胞數上升。給予AAV-mIL-17之2-OA-OVA/α-GalCer致敏小鼠肝臟門脈出現較嚴重的細胞浸潤,但並非淋巴細胞增加。相反地,給予AAV-mIL-4之2-OA-OVA/α-GalCer致敏小鼠,其肝臟單核細胞數明顯降低,但於肝臟切片卻發現肉芽腫數目增加。因此,我們推測IFN-γ能夠活化先天性免疫細胞促使肝臟得以破除免疫耐受性,IL-17則可能造成非淋巴細胞浸潤於門脈,相反地IL-4則有可能透過將TH1免疫反應誘導成TH2反應而降低浸潤至肝臟的免疫細胞數及其活化程度。 | zh_TW |
| dc.description.abstract | Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by slowly progressive non-suppurative cholangitis caused by immune-mediated destruction of intrahepatic bile ducts. Lymphocytes were recruited to the portal triad accompanied with the presence of antimitochondrial antibodies (AMAs) in the serum of PBC patients, the higher level of proinflammatory cytokines such as IFN-γ can also be detected in serum samples. The frequencies of autoreactive CD4+ T cells, CD8+ T cells and natural killer T (NKT) cells are higher in the liver which suggests a role for the cellular immunity that remain to be determined. CD4+ T cells can be divided into four subsets with distinct functions, including T helper (TH) 1, TH2, TH17 and regulatory T cells. By using a unique compound 2-OA-OVA, accompanied with α-GalCer injection, we established PBC-like syndrome in mice in order to study the cytokines milieus effects on the pathogenesis of PBC. Adeno-associated virus (AAV)-based vector was used to overexpress different cytokines in liver as it only induced minor response in vivo. We found IFN-γ significantly increased NK cells and NKT cells in the liver of 2-OA-OVA/α-GalCer immunized mice. To prevent the IFN-γ production from α-GalCer stimulation, we immunized the mice with 2-OA-OVA without α-GalCer and found that, IFN-γ was still able to induce NK and NKT cells infiltrating to liver and caused activation of NK cells. In contrast to IFN-γ, IL-17 caused the more severe pathological pattern which was not induced by hepatic lymphocytes. Interestingly, IL-4 decreased much of the T cells and NKT cells in liver of immunized mice albeit there were increased granulomas in the liver. We concluded that IFN-γ can induce activation of NK and NKT cells to break immune tolerance when presented antigen by antigen-preseting cells. IL-17 may cause non-lymphoid infiltrating in portal triad, while IL-4 may regulate the inflammatory response by skewing the TH1 responses to TH2 responses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:42:48Z (GMT). No. of bitstreams: 1 ntu-103-R01424003-1.pdf: 3450829 bytes, checksum: a59fc7ee515c4c652cf6edd9ce2793da (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 1
中文摘要 ii Abstract iii 縮寫對照表 v 第一章 研究背景 1 1.1. 原發性膽道硬化症(Primary biliary cirrhosis;PBC) 1 1.1.1. 臨床診斷 1 1.1.2. 自體抗體 1 1.1.3. PBC之病因 2 1.1.4. 病理特徵 4 1.1.5. 先天性免疫反應 4 1.1.6. 後天性免疫反應與細胞性免疫反應 5 1.1.7. Xenobiotic-induced PBC小鼠模式 5 1.2. 輔助型T細胞 (T helper cell, TH cell) 及細胞激素在原發性膽道硬化症之角色 6 1.2.1. 輔助型T細胞 6 1.2.2. 細胞激素與自體免疫疾病 7 1.2.3. TH1及TH17與PBC 9 1.3. Adeno-associated virus (AAV) 10 1.3.1. AAV-DJ Helper Free Bicistronic Expression System (GFP) 11 1.4. 研究動機與目的 11 第二章 材料與方法 12 2.1. AAV製備 12 2.2. 病毒之純化與濃縮 12 2.3. 病毒的定量 13 2.4 利用pAAV-mIFN-γ、pAAV-mIL-4及pAAV-mIL-17轉染AD293細胞 14 2.5. 實驗用小鼠 14 2.6. 2-OA-OVA/α-GalCer induced PBC小鼠模式 14 2.7. 以AAV施打PBC小鼠 15 2.8. 小鼠肝臟灌流與肝臟單核細胞分離 15 2.9. 以流式細胞儀FACS Calibur(BD)分析肝臟分離單核細胞表面抗原 15 2.10. 肝臟單核細胞體外培養 16 2.11. 血清樣品之收集 16 2.12. 血清中細胞激素之測定 17 2.13. 以ELISA測量PBC小鼠血清中anti-mPDC-E2 IgG及IgM 17 2.14. 肝臟病理切片製作 18 2.15 細胞RNA萃取、反轉錄及real-time PCR 19 2.16. 繪圖及統計分析 19 第三章 實驗結果 20 3.1. 利用Xenobiotic(2-OA-OVA/α-GalCer)誘發C57BL/6小鼠產生原發性膽道硬化症 20 3.2. PBC小鼠肝臟單核細胞經刺激後產生發炎性細胞激素IFN-γ及IL-17 21 3.3. 我們所建構出的帶有不同細胞激素基因的質體可成功將細胞激素分泌至上清液中,且具有正常的功能 21 3.3.1. pAAV-mIFN-γ之表現 21 3.3.2. pAAV-mIL-4之表現 22 3.3.3. pAAV-mIL-17之表現 22 3.4. AAV以尾靜脈注射入小鼠體內後,可在小鼠肝臟表現 22 3.5. 致敏前施打帶有不同細胞激素基因之AAV,各組別間的肝臟單核細胞總數未見明顯的改變 23 3.6. 給予AAV-mIL-4之小鼠肝臟中CD4+ 與CD8+ T細胞減少,T細胞與NK細胞活化的百分比下降 23 3.7. 小鼠經致敏後全數產生anti-PDC-E2 IgM及IgG,但給予AAV-mIL-17的小鼠之IgG效價降低 24 3.8. 給予AAV-mIL-17之致敏小鼠其肝臟細胞浸潤的情形增加 24 3.9. Naive小鼠給予α-GalCer之後,血清中IFN-γ與IL-4濃度升高 25 3.10. 給於AAV-mIFN-γ之PBC小鼠肝臟單核細胞總數增加,NK細胞與NKT細胞數也有顯著性增加,且NK細胞活化百分比上升 25 第四章 結論與討論 26 附圖 32 參考文獻 56 附錄 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 原發性膽道硬化症 | zh_TW |
| dc.subject | IFN-γ | zh_TW |
| dc.subject | IL-17 | zh_TW |
| dc.subject | IL-4 | zh_TW |
| dc.subject | AAV | zh_TW |
| dc.subject | 先天性免疫反應 | zh_TW |
| dc.subject | IFN-γ | en |
| dc.subject | primary biliary cirrhosis | en |
| dc.subject | innate immunity | en |
| dc.subject | AAV | en |
| dc.subject | IL-17 | en |
| dc.subject | IL-4 | en |
| dc.title | 輔助型T細胞相關細胞激素調控原發性膽道硬化症之研究 | zh_TW |
| dc.title | Study of Helper T-associated Cytokines on the Regulation of Primary Biliary Cirrhosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雅倩(Ya-Chien Yang),沈家瑞(Chia-Rui Shen),吳慧琳(Hui-Lin Wu) | |
| dc.subject.keyword | 原發性膽道硬化症,IFN-γ,IL-17,IL-4,AAV,先天性免疫反應, | zh_TW |
| dc.subject.keyword | primary biliary cirrhosis,IFN-γ,IL-4,IL-17,AAV,innate immunity, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
