請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57338完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李達源 | |
| dc.contributor.author | Chung-Hung Wu | en |
| dc.contributor.author | 吳俊宏 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:42:14Z | - |
| dc.date.available | 2016-08-13 | |
| dc.date.copyright | 2014-08-13 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-29 | |
| dc.identifier.citation | 王明光。2000。土壤環境礦物學。藝軒圖書出版社。
北市環保局。2006。95年度台北市農地土壤重金屬砷含量調查及查證計畫。台北市政府環境保護局編印。 吳佩蓉。2013。添加不同有機資材至砷汙染土壤中對土壤溶液砷濃度及水稻幼苗砷吸收量之影響。國立台灣大學農業化學系碩士論文。 邱書啟。2006。若干臺灣耕地土壤中磷淋溶有關指標之比較。國立台灣大學農業化學系碩士論文。 陳仁炫、鄒裕民。2008。土壤與肥料分析手冊 (一),土壤化學分析。中華肥料學會,行政院農委會農糧署。 陳文福、呂學諭、劉聰桂。2010。台灣地下水之氧化還原狀態與濃度。農業工程學報。第56卷第2期。 黃鎮海、郭福成。作物施肥手冊。1986。行政院農業委員會、農業試驗所、中華永續農業協會。 經濟部。2007。地調所:砷鉛鐵礬礦不應是導致北投溪及關渡平原砷含量高的元凶。經濟部中央地質調查所新聞稿。 蘇紹瑋。2010。臺北關渡平原砷汙染土壤特性與作物吸收砷特性。國立台灣大學農業化學系博士論文 (預審)。 Abedin, M.J., J.C. Howells, and A.A. Meharg. 2002. Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil. 240: 311-319. Adepetu, J.A. and R.B. Corey. 1976. Organic phosphorus as a predictor of plant-available phosphorus in soils of southern Nigeria. Soil Sci. 122: 159-164. Ascar, L., I. Ahumada, and P. Richter. 2008. Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere. 72: 1548-1552. Asghar, M and Y. Kanehiro. 1980. Effect of sugar-cane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe and Mn. Trop. Agric. 57: 245-258. Baligar, V.E. and O.L. Bennett. 1986. Outlook on fertilizer use efficiency in the tropics. Fertilizer Research. 10: 83-96. Beckwith, R.S. 1965. Sorbed phosphate at standard supernatant concentration as an estimate of the phosphate needs of soils. Aust. J. Exp. Agric. Anim. Husb. 5: 52-58. Bigham, J.M., D.C. Golden, S.W. Buol, S.B. Weed, and L. H. Bowen. 1978. Iron oxide mineralogy of well-drained ultisols and oxisols: II. influence on color, surface area, and phosphate retention1. Soil Sci. Soc. Am. J. 42: 825-830. Bohn, H.L., B.L. McNeal, and G.A. O”Connor. 1985. Soil Chemistry. John Wiley ﹠Sons, New York. 251-256. Bowell, R.J. 1994. Sorption of arsenic by iron oxides and oxyhydroxides in soils, Appl. Geochem. 9: 279-286. Chen C.J., Y.C. Chuang, and T.M. Lin. 1985. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 45: 5895-5899. Chen, S.L., S.J. Yeh, M.H. Yang, and T.H. Lin. 1995. Trace-element contration and arsenic speciation in the well water of a Taiwan area with endemic black foot disease. Biol. Trace Elem. Res. 48: 263-274. Chen, Z., Y.G. Zhu, W.J. Liu, and A.A. Meharg. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa L.) roots. New Phytol. 165: 91-97. Cullen, W.R. and K.J. Reimer. 1989. Arsenic speciation in the environment, Chem. Rev. 89: 713-764. Dean, J.A. 1999. Lange’s Handbook of Chemistry, 15th ed., McGraw-Hill, New York. 222-235. Dhar, R.K., B.K. Biswas, G. Samanta, B.K. Mandal, D. Chakraborti, and S. Roy. 1997. Groundwater arsenic calamity in Bangladesh. Curr. Sci. India 73: 48-59. Dixit, S. and J.G. Hering. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility, Environ. Sci. Technol. 37: 4182-4189. Eary, L.E. and J.A. Schramke. 1990. Rates of inorganic oxidation reactions involving dissolved oxygen. J. Am. Chem. Soc. 379-396. Fox, R.L., and E.J. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. Proc. 34:90-907. Fuller, C.C., J.A. Davis, and G.A.Waychunas. 1993. Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta. 57: 2271-2282. Geng C.N., Y.G. Zhu, W.J. Liu, and S.E. Smith. 2005. Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquat. Bot. 83: 321-331. Goldberg, S. 2002. Competitive adsorption of arsenic and arsenite on oxides and clay minerals, Soil Sci. Soc. Am. J. 66: 413-421. Guo, W., Y.G. Zhu, W.J. Liu, Y.C. Liang C.N. Geng, and S.G. Wang. 2007. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ. Pollut. 148: 251-257. He, L.M., L.W. Zelazny, V.C. Baligar, K.D. Ritchey, and D.C. Martens. 1997. Ionic strength effects on sulfate and phosphate adsorption on g-alumina and kaolinite: triple-layer model, Soil Sci. Soc. Am. J. 61: 784-793. Hossain, M.B., M. Jahiruddin, R.H. Loeppert, G.M. Panaullah, M.R. Islam, and J.M. Duxbury. 2009. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant soil. 317: 167-176. Huang Y., H. Ying, and Y. Liu. 2010. Combined effects of chromium and arsenic on rice seedlings (Oryza sativa L.) growth in a solution culture supplied with or without P fertilizer. Life Sci. 53: 1459-1466. Huang, Y.Z., H.U. Ying, and Y.X. Liu. 2010. Combined effects of chromium and arsenic on rice seedlings (Oryza sativa L.) growth in a solution culture supplied with or without P fertilizer. Sci China Life Sci. 53: 1459-1466. Huang, Y.Z., X.C. Qian, G.Q. Wang, Y.L. Gu, S. Z. Wang, and Z. H. Cheng. 1992. Syndrome of endemic arsenism and fluorosis: A clinical study. Chinese Med. J. 105: 586-590. Islam, M.R., and M. Jahiruddin. 2010. Effects of arsenic and its interaction with phosphorus on yield and arsenic accumulation in rice. J. Bangladesh Agril. Univ. 6: 277-284. Kuhn, A., C.A. Johnson, and L. Sigg. 1994. Cycles of trace elements in a lake with a seasonally anoxic hypolimnion. J. Am. Chem. 473-497. Kumar, N., S. Mallick, R.N. Yadava, A.P. Singh, and S. Sinha. 2013. Co-application of selenite and phosphate reduces arsenite uptake in hydroponically grown rice seedlings: Toxicity and defence mechanism. Ecotox. Environ. Safe. 91: 171-179. Li, R.Y., J.L. Stroud, J.F.Ma, S.P. McGrath, and F.J. Zhao. 2009. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 43: 3778-3783. Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Exp. Bot. 55: 1707-1713. Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol. 162: 481-488. Liu, W.J., Y.G. Zhu, Y. Hu, P.N. Willians, A.G. Gault, A.A. Meharg, J.M. Charnock, and F. A. Smith. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ. Sci Technol. 40: 5730-5736. Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. 2006. A silicon transporter in rice. Nature. 440: 688-691. Mamtaz, R. and D.H. Bache. 2001. Reduction of arsenic in groundwater by coprecipitation with iron, J.Water Supply Res. Technol. 50: 313-324. Meharg, A. A., M.D.M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 37: 229-234. Meng, X., G.P. Korfiatis, C. Christodoulatos, and S. Bang. 2001. Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system.Water Res. 35: 2805-2819. Ozanne, P.G., and T.C. Shaw. 1968. Advantages of recently developed phosphate sorption tests over the older extractant methos of soil phosphate.Int. Soc. Sci. Congr., Trans, 9th. 2: 273-380. Parks, G.A. 1965. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxyl-complex systems. Chem. Rev. 65: 177-198. Persson, P., N. Nilsson, and S. Sjoeberg. 1996. Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. J. Colloid Interface Sci. 177-185. Pichler, T.J.V., and G.E.M. Hall. 1999. Natural input of arsenic into a coral-reef ecosystemby hydrothermal fluids and its removal by Fe(III) oxyhydroxides, Environ. 185-190. Pigna, M., V. Cozzolino, A.G. Caporale, M.L. Mora, V.D. Meo, A.A. Jara, and A. Violante. 2010. Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J. Soil Sci. Plant Nutr. 10: 428-442. Sadiq, M. 1997. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water, Air, Soil Pollut. 93: 117-136. Shaibur, M.R., T.A. Adjadeh, and S. Kawai. 2013. Effect of phosphorus on the concentrations of arsenic, iron and some other elements in barley grown hydroponically. Soil Sci. Plant Nutr. 13: 87-98. Shri, M., S. Kumar, D. Chakrabarty, P.K. Trivedi, S. Mallick, P. Misra, S. Srivastava, R.D. Tripathi, and R. Tuli. 2009. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotox. Environ. Safe. 1102-1110. Signes-Pastor, A., F. Burlo, K. Mitra, and A.A. Carbonell-Barrachina. 2007. Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil. Geoderma. 137: 504-510. Smith , E., R. Naidu, and A.M. Alston. 2002. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption, J. Environ. Qual. 31: 557-563. Smith,E., R. Naidu, and A.M. Alston. 1999. Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. J. Environ. 28: 1719-1726. Stumm, W., J.J. Morgan. 1995. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, John Wiley & Sons, NewYork. 157-185. Walsh L.M. and D.R. Keeney. 1975. Behavior and phytotoxicity of inorganic arsenicals in soils. Am. Chem. Soc. 35: 178-185. Wang, L. and G. Duan. 2009. Effect of external and internal phosphate status on arsenic toxicity and accumulation in rice seedlings. J. Environ. Sci. 21: 346-51. Wang, S. and C.N. Mulligan. 2006. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ. Geochem. Health. 28: 197-214. Wang, T.G. and J.H. Peverly. 1999. Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Sci. Soc. Am J. 63: 247-252. Wu, C., H. Li, Z. Ye, F. Wu, and M.H. Wong. 2013. Effects of As levels on radial oxygen loss and As speciation in rice. Environ. Sci. Pollut. 20: 8334-8341. Xu, X.Y., S.P. McGrath, A.A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically markedly decreased arsenic accumulation. Environ. Sci. Technol. 42: 5574-5579. Xu,H., B. Allard, and A. Grimvall. 1998. Influence of pH and organic substance on the adsorption of arsenic(V) on geologicmaterials,Water, Air, Soil Pollut. 40: 293-305. Ye, Z., A.J.M. Baker, M.H. Wang, and A.J. Willis. 1998. Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat. Bot. 61: 55-67. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57338 | - |
| dc.description.abstract | 前人研究指出,水耕環境下,水稻隨著磷濃度的增加,可以降低水稻的砷毒害以及降低植體中砷的含量,其原因為水稻吸收 As(Ⅴ) 的通道即為水稻吸收磷酸根之通道。但土耕試驗中,施用磷肥至土壤中,磷會與砷競爭土壤中的吸附位置,導致砷的有效性提高,反而增加水稻毒害和砷累積。因此,本研究主要目的為在土壤中添加高濃度之磷肥以探討磷對土壤孔隙水中砷的釋出以及水稻幼苗吸收砷之影響。本研究選用四種磷吸附容量不同之土壤,分別為三種低砷土壤將軍系 (Cf)、平鎮系 (Pc)、關渡低砷 (GdL) 以及高砷土壤 (GdH),其中將軍系、平鎮系土壤人工添加80 mg As(Ⅴ) kg-1 之砷,製備成砷汙染土壤。依據作物施肥手冊以及Bray-1萃取之有效性磷得知磷肥推薦施用量 (一倍): 6 mg P kg-1 (將軍系和平鎮系土壤) 以及 8mg P kg-1 (關渡低、高砷土壤)。以磷酸氫二鈣作為磷處理,磷肥施用量為:(1) control (2) 一倍 (3) 二倍 (4) 五倍 (5) 十倍之磷推薦施用量,浸水50天期間進行孔隙水測定以及水稻幼苗盆栽試驗。結果顯示,高砷濃度土壤中,孔隙水砷釋出量由高至低分別為:將軍系高砷濃度土壤 > 關渡高砷濃度土壤 > 平鎮系高砷濃度土壤,原因為將軍系土壤的磷吸附容量最低,因此,砷釋出的也高;平鎮系土壤富含結晶型鐵,且平鎮系土壤為低有機質和酸性土壤之特性,具有強烈的砷吸附能力;關渡土壤富含無定形鐵,浸水期間無定形鐵易還原溶解而釋出砷。當磷施用量的增加,將軍系土壤孔隙水中砷濃度也隨之上升,但平鎮系與關渡土壤中孔隙水中砷濃度並沒有因磷施用量增加而有顯著差異,其與磷吸附容量較大有關,因平鎮系和關渡土壤有較高的磷吸附容量,當磷添加進土壤中後,磷隨即被土壤中的鐵 (氫) 氧化物吸附,而減少了與砷酸根競爭的機會。水稻幼苗盆栽試驗結果顯示。種植於低砷濃度土壤中的水稻幼苗生質量並沒有因為施用磷肥而有顯著差異。種植於高砷濃度的將軍系、關渡土壤中水稻幼苗因磷肥的施用而有生質量下降趨勢,且將軍系土壤之水稻幼苗根部砷含量有增加之趨勢,結果顯示,三種高砷土壤中,水稻幼苗生質量並沒有因為高磷肥的施用而降低水稻幼苗砷毒害現象,特別在將軍系高砷濃度土壤中,提高磷肥的施用量,反而造成水稻幼苗毒害程度加劇。 | zh_TW |
| dc.description.abstract | Previous studies have shown the phosphate additions in solution culture studies decrease As uptake and mitigate As-caused phytotoxicity symptoms. Phosphate has an inhibitory effect that competes with arsenate for the same transporter during uptake by the plasma membrane. Summarizing result of pot and field experiment leads to a different conclusion. Plant uptake of As has been shown to increase upon P application in pot experiments, presence of P causes As-P competition for sorption sites resulting in increased As bioavailability, and hence higher As concentration in plant. Therefore, the aim of this study is to evaluate the effect of application of phosphate on growth and arsenic uptake of rice seedling. Three different anion capacity soils, Chengchung (Cf) and Pinchen (Pc) soils which were spiked with 0 and 80 mg As(Ⅴ) kg-1 respectively and two Guandu soils (Gd) with low and high levels of As concentration were used in this study. The P recommended application rate 6 mg P kg-1¬ for Cf and Pc soils, 8 mg P kg-1 for Gd soils. Phosphate were added as Ca(H2PO4)2 • H2O, the P application levels included: (1) control (0 time) (1) 1 time (2) 2 times (3) 5 times (4) 10 times of P recommended. Concentration of As and P in soil solution under flooded soil for 50 days, plant dry weight and As concentration in roots and shoots of rice seedling were determined. The results indicate that the addition of phosphate significantly increased the concentration of As in soil solutions of Cf soil. However, the phenomena were not observed in Pc and Gd soils. The addition of P resulted in increase in As desorption, and the effect was more pronounced in low anion capacity soils. There are two different As sorption site in Pc and Gd soils which were crystalline Fe and amorphous Fe respectively. The properties of Pc soil has amount of crystalline Fe, acidity and low organic matters contents, thus Pc soil has highest As and P retention. On the other hand, although Gd soil has highest anion capacity, amorphous Fe has easily reduced in anaerobic condition results of increasing As released.
The results of pot experiments of rice seedlings show that the effect of phosphate on biomass of rice seedling was not significant in non-added As(Ⅴ) soils and low level As concentration soil of Gd. However, the dry weight in shoot and root increased with increasing rates of phosphate in Pc soil. On the contrary, the growth of rice seedling in As-contaminated soils was inhibited with increasing rate of phosphate application, and the effect was less pronounced in Pc soil. The above results suggest, in As-contaminated soils, the amounts of As in soil solution were greatly increased with increasing phosphate, thus resulting in the increase of As toxicity of rice seedlings ,the effect was more pronounced in low anion capacity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:42:14Z (GMT). No. of bitstreams: 1 ntu-103-R01623018-1.pdf: 2060859 bytes, checksum: 4ece7b74cae6d71e31a1e9b7df5c8753 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 第一章 緒論 9 1.1砷的化學特性 9 1.2砷的來源 12 1.3砷對人類的影響 12 1.4砷對水稻生理、生化活性之影響 13 1.5台灣地區的砷汙染 13 1.5.1關渡平原 13 1.5.2台南地區 14 1.6土壤中的砷 15 1.6.1土壤中砷與膠體之吸附關係 15 1.6.2土壤中砷沉澱現象 16 1.7土壤中的磷 19 1.8施用磷肥對土壤中砷的影響 19 1.9施用磷肥影響水稻對砷之吸收 20 1.10施用磷與鐵膜之關係 21 1.11研究動機與目的 22 第二章 材料與方法 23 2.1供試材料 23 2.1.1供試土壤 23 2.1.2供試水稻品種 23 2.2試驗土壤基本性質分析 23 2.2.1土壤水分含量:重量法 (烘乾法) 23 2.2.2土壤質地分析 24 2.2.3土壤pH值 24 2.2.4土壤有機質含量測定 24 2.2.5土壤無定形鐵錳含量測定 25 2.2.6土壤游離態鐵鋁含量測定 25 2.2.7土壤總砷含量測定 25 2.2.8土壤有效磷之測定 26 2.3土壤磷等溫吸附試驗 27 2.3.1 Langmuir 等溫吸附方程式簡述 27 2.3.2 Langmuir吸附方程式參數之估算 27 2.3.3土壤磷吸附試驗 28 2.4試驗土壤前處理 29 2.4.1兩種供試土壤添加As(Ⅴ) 之處理 29 2.4.2供試土壤磷處理 29 2.4.3供試土壤基肥處理 30 2.5 水稻幼苗生長之盆栽試驗 31 2.5.1水稻育苗 31 2.5.2水稻插秧 31 2.5.3水稻栽培環境 31 2.6水稻種植期間之量測 32 2.6.1盆栽試驗土壤pH值測定 32 2.6.2盆栽試驗土壤Eh值測定 32 2.6.3土壤溶液之砷、砷物種、鐵和磷濃度 32 2.7植體採收 33 2.7.1水稻根部生質量 33 2.7.2水稻植體砷、鐵、及磷含量分析 33 2.7.3水稻根部表面鐵膜萃取 34 2.8 統計分析 34 第三章 結果與討論 35 3.1供試土壤之理化性質 35 3.2土壤磷等溫吸附試驗 36 3.2.1土壤磷最大吸附量 36 3.2.2土壤有效磷飽和度 36 3.2.3土壤P+As飽和度 36 3.3水稻種植期間土壤溶液中pH值之變化 42 3.4水稻種植期間土壤溶液中Eh值之變化 45 3.5水稻種植期間土壤溶液中砷濃度之變化 48 3.6水稻種植期間土壤溶液中磷濃度之變化 52 3.7水稻種植期間 (第0天和第50天) 高砷汙染土壤溶液中砷物種比例之變化與濃度 57 3.8水稻幼苗盆栽試驗之生長情形及生質量 60 3.9水稻幼苗盆栽試驗之植體分析 68 3.9.1水稻植體根部鐵膜 68 3.9.2水稻植體砷濃度 71 3.9.3水稻植體中砷總吸收量與佔植體所含總量百分比 75 3.10水稻種植期間高砷濃度土壤孔隙水中磷/砷莫耳濃度比值之變化 78 3.11水稻種植期間高砷濃度土壤孔隙水中磷/五價砷莫耳濃度比值之變化 83 第四章 結論 85 第五章 參考文獻 86 第六章 附錄 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 吸附作用 | zh_TW |
| dc.subject | 孔隙水 | zh_TW |
| dc.subject | arsenic | en |
| dc.subject | phosphate | en |
| dc.subject | adsorption | en |
| dc.subject | pore water | en |
| dc.title | 添加磷肥於砷汙染土壤中對砷釋出至土壤孔隙水中以及水稻幼苗累積砷之影響 | zh_TW |
| dc.title | The Effects of Phosphate Application on Arsenic Release into Pore Water and Uptake by
Rice Seedlings Grown in As-contaminated Paddy Soils | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳尊賢,鍾仁賜,王尚禮,陳仁炫 | |
| dc.subject.keyword | 砷,磷,吸附作用,孔隙水, | zh_TW |
| dc.subject.keyword | arsenic,phosphate,adsorption,pore water, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
