請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文亮(Wen-Liang Liao) | |
| dc.contributor.author | Hsin-Fu Chen | en |
| dc.contributor.author | 陳信輔 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:41:31Z | - |
| dc.date.available | 2015-08-04 | |
| dc.date.copyright | 2014-08-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-29 | |
| dc.identifier.citation | 沈世傑 (1993) 台灣魚類誌 pp.139-140。
陳義雄、方力行 (1999) 台灣淡水及河口魚類誌。 陳義雄、方力行 (2001) 台東縣河川魚類誌。 陳義雄、張詠青 (2005) 台灣淡水魚類原色圖鑑第(一)卷鯉形目。 曾晴賢 (1996) 台灣淡水魚類。 黃順國 (2001) 飼料中添加類胰島素成長因子對赤鰭笛鯛成長之影響 國立台灣大學漁業科學研究所碩士論文。pp. 43. 陳佳珍 (2001) 飼料中添加羽扇豆粉及重組類胰島素成長因子對吳郭魚成長效果之研究。國立台灣大學漁業科學研究所碩士論文。pp. 68. 盧信惠 (2002) 重組類胰島素成長因子對赤鰭笛鯛成長之研究。國立台灣大學漁業科學研究所碩士論文。pp. 95. 歐俊男 (2006) 飼料中添加動物性及植物性取代原料取代魚粉對赤鰭笛鯛成長之影響。國立台灣大學漁業科學研究所碩士論文。pp. 70. 蘇柏安 (2006) 飼料中添加重組類胰島素成長因子與植物性原料取代魚粉對赤鰭笛鯛與海鱺成長之影響。國立台灣大學漁業科學研究所碩士論文。pp. 87. 陳柔伊 (2007) 飼料中添加重組類胰島素成長因子對日本鰻與筍殼魚成長 之影響。國立台灣大學漁業科學研究所碩士論文。pp. 38. 蔡欣原 (2010) 飼料中添加重組類胰島素成長因子及植物性原料取代魚粉對銀鱸與寶石鱸成長之影響。國立台灣大學漁業科學研究所碩士論文。pp. 43. 劉舜豪 (2011) 菊池氏細鯽之飼料開發。國立台灣大學漁業科學研究所碩士論文。pp. 48. 陳威廷 (2012) 飼料中添加不同來源之脂質在不同溫度對菊池氏細鯽成長之影響。國立台灣大學漁業科學研究所碩士論文。pp. 43. Alan, T.D., Stickney, R. R., 1978. Growth response of Tilapia aureus to dietary protein quality and quantity. Trans. Am. Fish. Soc., 107: 479-483. Association of the Official Analytical Chemists (AOAC), 1995. Official Methods of Analysis of the Association of the Official Analytical Chemists International, 16th ed. AOAC International, Arlington, VA, USA. Ayyappan, S., 1992. Potential of Spirulina as a feed supplement for carp fry. Seshadri CV, Jeeji Bai N (eds) Spirulina Ecology, Taxonomy, Technology, and Applications. National Symposium, Murugappa Chettiar Research Centre, Madras, 171-172. Becker, E. W., Venkataraman, L. V., 1982. Biotechnology and Exploitation of Algae: The Indian Approach. German Agency for Technical Cooperation, Eschbom, West Germany. Becker, E.W., 2007. Research review paper Micro-algae as a source of protein. Biotechnology Advances, 25: 207–210. Belay, A., Ota, Y., Miyakawa, K., Shimamatsu, H., 1993. Current knowledge on potential health benefits of Spirulina . J. Appl. Phycol., 5: 235–241. Belay, A., Kato, T., Ota, Y., 1996. Spirulina (Arthrospira): potential application as an animal feed supplement. J. Appl. Phycol., 8: 303–311. Beresto, V., 2001. Our experience in Spirulina feeding to minks in the reproduction period. Scientifur, 25: 11–15. Bern, H. A., Madsen, S. S., 1992. A selective survey of the endocrine system of the rainbow trout (Oncorhynchus mykiss) with emphasis on the hormonal regulation of ion balance. Aquaculture, 100: 237-262. Blum, J. C., Calet, C., 1976. Valeur alimentaire des algues spirulines pour la croissance du poulet de chair. Ann. Nutr. Aliment., 29: 551-574. Brune, H., 1982. Zur Vertraglichkeit der Einzelleralgen Spirulina maxima und Scenedesmus acutus als alleinige Eiweibquelle fur Broiler. Z. Tierphysiol. Tieremachr. Futtermittelkd., 48: 143-154. Carr, W. E. S., Chaney, T. B., 1976. Chemical stimulation of feeding behavior in the pinfish, Lagodon rhomboids: characterization and identification of stimulatory substances extracted from shrimp. Comp. Biochem. Physiol., 54A: 437-441. Cho, C. Y., Kaushik, S. J., 1985. Effects of protein intake on metabolizable and net energy values of fish diets. In: Cowey,C. B., Mackie A. M., Bell, J. G. (Eds.), Nutrition and Feeding in Fish. Academic Press London, pp.95-117. Chow, C. Y., Woo, N. Y. S., 1990. Bioenergetic studies on an omnivorous fish Oreochromis mossambicus: evaluation of the utilization of Spirulina algae in feeds. In Hiranu R, Hanyu I (eds), Proc. 2nd Asian Fish. Forum, Tokyo, Japan, 291-294. Cifelli, O., 1983. Spirulina : the edible organism. Microbiol. Rev., 47: 551–578. Ciferri, O., Tiboni, O., 1985. The biochemistry and industrial potential of Spirulina. Ann. Rev. Microbiol, 39: 503-526. Clement, G., Giddey, C., Menzi, R., 1967. Amino acid composition and nutritive valve of the alga Spirulina maxima. J. Sci. Food Agric. (11): 497-501. Collie, N. L., Stevens, J. J., 1985. Hormonal effects on L-proline transport in coho salmon (Oncorhynchus kisutch) intestine. General and Comparative Endocrinology, 59: 399-409. Cox, P. A., Banack, S. A., Murch, S. J., Rasmussen, U., Tien, G., Bidigare, R. R., Metcalf, J. S., Morrison, L. F., Codd, G. A., Bergman, B., 2005. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U.S.A., 102: 5074-5078. Dabrowski, K., 1977. Protein requirements of grass carp fry (Ctenophayngodon idella Val.). Aquaculture, 12: 63-73. Daniel, T., Kumuthakala-Vally, R., 1991. The use of Spirulina, a bluegreen alga, as a substitute for fish meal in diets for Cirrhinus mrigana fingerlings. Indian Zoologist, 15: 5-7. Degger, B. G., Richardson, N., Collet, C., Ballard, F. J., Upton, Z., 1999. In vitro characterization and in vivo clearance of recombinant barramundi (Lates calcarifer) IGF-I. Aquaculture, 177: 153–160. Duan, C. M., 1998. Nutritional and developmental regulation of insulin-like growth factors in fish. J. Nutr., 128: 306S–314S. Duan, C., Hirano, T., 1990. Stimulation of 35S-sulfate uptake by mammalian insulin-like growth factors I and II in culture cartilages of Japanese eel, Anguilla japonica. J. Exp. Zool., 256: 347-350. El-Sayed, A. M., 1994. Evaluation of soybean meal, Spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127: 169-176. Falkmer, S., Dafgard , E., El-Salhy, M., Engstrom , W., Grimelius, L., Zetterberg, A., 1985. Phylogenetical aspects on islet hormone families: a mini-review with particular reference to insulin as a growth factor and to the phylogeny of PYY and NPY immune-reactive cells and nerves in the endocrine and exocrine pancreas. Peptides. Vol. 6, Suppl. 3: 315-320. Fine, M., Zilberg, D., Cohen, Z., Degani, G., Moav, B., Gertkd, A., 1996. The effect of dietary protein level, water temperature and growth hormone administration on growth and metabolism in the common carp (Cyprinus carpio). Comp. Biochem. Physiol. Vol. 114A, No. 1: 35-42. Folch, J., Lees, M., Stanley, G. H. S., 1956. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509. Francis, G., Makkar, H. P. S., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199:197-227. Garling Jr., D. L., Wilson, R. P., 1976. Optimum dietary protein to energy ratio for channel catfish fingerlings, Ictalurus punctatus. J. Nutr., 106: 1368-1375. Gentil, V., Martin, P., Smal, J., Le Bail, P.-Y., 1996. Production of recombinant insulin-like growth factor-II in the development of a radioimmunoassay in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 104: 156-167. Gomez-Requeni, I., Mingarro, M., Calduch-Giner, J., Medale, F., Martin, S., Houlihan, D., Kaushik, S., Perez-Sanchez, J., 2004. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture, 232: 493–510. Gomesa, E. F., Remab, P., Kaushik, S.J., 1995. Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture, 130: 177–186. Gunasekera, R. M., De Silva, S. S., Collins, R. A., Gooley, G., Ingram B. A., 2000. Effect of dietary level on growth and food utilization in juvenile Murray cod Maccullochella peelii (Mitchell). Aqua. Res., 31: 181-187. Hansen, A. C., Rosenlund, G., Kalsen, O., Koppe, W., Hemre, G.I., 2007. Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.). I: effects on growth and protein retention. Aquaculture, 272: 599–611. Hertrampf, J.W., Piedad-Pascual, F., 2000. Krill meal. In: Hertrampf, J.W., Piedad-Pascual, F. (Eds.), Handbook on Ingredients for Aquaculture Feeds. Kluwer Academic Publishers B. V., Dordrecht, NL, pp. 223–228. Heussner, A. H., Mazija, L., Fastner, J., Dietrich, D. R., 2012. Toxin content and cytotoxicity of algal dietary supplements. Toxicology and Applied Pharmacology, 265: 263–271. Hevroy, E., El-Mowafi, A., Taylor, R., Norberg, B., Espe, M., 2008. Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A: 151, 621. Ibrahem, M. D., Ibrahim, M. A., 2014. The potential effects of Spirulina platensis (Arthrospira platensis) on tissue protection of Nile tilapia (Oreochromis niloticus) through estimation of P53 level. Journal of Advanced Research, 5: 133–136. Jackson, A.J., Capper, B.S., Matty. A.J., 1982. Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicus. Aquaculture, 27: 97-109. James, R., Sampath, K., Thangarathinam, R., Vasudevan, J., 2006. Effect of dietary Spirulina level on growth, fertility coloration and leucocyte count in red swordtail, Xiphophorous helleri. Isr. J. Aquac. Bamidgeh, 58: 97–104. Jauncey, K., 1982. The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapia (Sarotherodon mossambicus). Aquaculture, 27: 43-54. Kato, T., Miyakawa, K., 1992. Growth promotion agent for fish. Japanese Patent # TOKU-KAI-HEI 5-268884. Kaushik, S., Coves, D., Dutto, G., Blanc, D., 2004.Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax.Aquaculture, 230: 391–404. Kikuchi, K., 1999. Partial replacement of fish meal with corn gluten meal in diets for Japanese flounderParalichthys olivaceus. J. World Aquacult. Soc., 30: 357–363. Kim, J.D., Ahn, K.H., 1993. Effects of monocalcium phosphate supplementation on phosphorus discharge and growth of carp (Cyprinus carpio).grower. Asian-Austral. J. Anim. Sci.,6: 521–526. Kim, J.D., Kim, K.S., 1995. Effects of dietary monocalcium phosphate on growth performances, feed utilization and phosphorus discharge by carp (Cyprinus carpio). Korean J. Anim. Nutr. Feed., 19: 42–49, (in Korean, with English abstract). Klein, B., Buchholz, R., 2013. Microalgae as sources of food ingredients and nutraceuticals. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals: 559-570. Lewis, H. A., Kohler, C. C., 2008. Corn gluten meal partially replaces dietary fish meal without compromising growth or fatty acid composition of sunshine bass. N. Am. J. Aquac., 70: 50–60. Lewis, H. A., Kohler, C. C., 2008. Minimizing fish oil and fish meal with plant-based alternatives in sunshine bass diets without negatively impacting growth and muscle fatty acid profile. J. World Aqua. Soc., 39: 573–585. Liener, I. E., 1989. Anti-nutritional factors in legume seeds: state of the art. In: Huisman, J., van der Poe1, T.F.B., Liener, I.E. (Eds.), Recent Advances of Research in Antinutritional Factors in Legume Seeds. Pudoc, Wageningen, pp. 6-13. Lim, C., 1989. Practical feeding – Tilapia. In: Lovell, T.(ed.). Nutrition and feeding of fish. Van Nostrand, Reinhold, New York, USA, 163pp. Mazid, M. A., Tanaka, Y., Katayama, T., Asadur-Rahmafl, M., Simpson, A. L., Chichester, C.O., 1979. Growth response of Tilapia zilii fingerlings fed with isocaloric and variable-protein-level diets. Aquaculture, 18: 115-122. Mackie, A. M., Mitchell, A. I., 1982. Further study on the chemical control of feeding behavior in the Dover sole, Solea solea. Comp. Biochem. Physiol., 73A: 89-93. Matthews, S., Kinhult, A., Hoeben, P., Sara, V., Anderson, T., 1997. Nutritional regulation of insulin-like growth factor-I mRNA expression in barramundi, Lates calcarifer. J. Mol. Endocrinol., 18: 273–276. Men, K., Ai Q., Mai K., Xu W., Zhang, Y., Zhou, H., 2014. Effects of dietary corn gluten meal on growth, digestion and protein metabolism in relation to IGF-I gene expression of Japanese seabass, Lateolabrax japonicas. Aquaculture, 428–429: 303–309. Mente, E., Deguara, S., Santos, M., Houlihan, D., 2003. White muscle free amino acidconcentrations following feeding a maize gluten dietary protein in Atlantic almon(Salmo salar). Aquaculture, 225: 133–147. Mohanty, S. S., Samantaray, K., 1996. Effects of varying levels of dietary protein on the growth performance and feed conversion efficiency of snakehead Channa striata fry. Aquacult. Nutr. 2: 89-94. Moriyama, S., Dickhoff, W. W., Plisetskaya, E. M., 1995. Isolation and characterization of insulin-like growth factor-I from rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology, 99: 221-229. Moriyama, S., Ayson, F.G., Kawauchi, H., 2000. Growth regulation by insulin-like growth factor-I in fish. Biosci. Biotechnol. Biochem., 64: 1553–1562. Mustafa, M. G., Takeda, T., Umino, T., Wakamatsu, S., Nakagawa, H., 1994. Effect of Ascophyllum and Spirulina meal as feed additives on growth and feed utilization of red sea bream, Pagrus major. J. Appl. Ichthyol., 10: 141-145. Nakagawa, H., Gomez-Diaz, G., 1995. Usefulness of Spirulina sp.meal as feed additive for giant freshwater prawn, Mcrobrachium rosenbergii. Suisanzoshoku, 43: 521-526. Nazareno, R., Kuchkarova, M., Lavrov, A., Tulaganov, A., Zaripov, E. 1975. Study of the effect of the suspended matter of the alga Spirulina platensis on egg production and live weight of chickens (feed supplement). Uzb. Biol. Zh, 19: 21-23. Nengas, I., Alexis, M. N., 1996. Partial substitution of fishmeal with soybean meal products and derivatives in diets for gilthead sea bream Sparus aurata L. Aqua. Res., 27: 147-156. NRC(National Research Coucil), 1993. Nutrition Requirements of Fish. National Academy Press, Washington, DC, 114 pp. Ogino, C., Saito, K., 1970. Proyein nutrition in fish - I. The utilization of dietary protein by young carp. Bull. Jpn. Soc. Fish., 36: 259-264. Ogino, C., Takeda, H., 1976. Mineral requirements in fish - III. Calcium and phosphorus requirements in carp. Bull. Jpn. Soc. Sci. Fish., 42: 793-799. Ogino, C., Takeuchi, L., Takeda, H., Watanabe, T., 1979. Availability of dietary phosphorus in carp and rainbow trout. Bull. Jpn. Soc. Sci. Fish., 45: 1538–1553. Olvera-Novoa, M. A., Dominguez-Cen, L. J., Olivera-Castillo, L., Martinez-Palacios, C. A., 1998. Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquaculture Research, 29: 709–715. Page, J. W., Andrews, J. W., 1973. Interaction of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr., 103: 1339-1346. Pedroso, F., de Jesus-Ayson, E., Cortado, H., Hyodo, S., Ayson, F., 2006. Changes in mRNA expression of grouper (Epinephelus coioides) growth hormone and insulin-like growth factor I in response to nutritional status. Gen. Comp. Endocrinol., 145: 237–246. Pereira, T., Oliva‐Teles, A., 2003. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquac. Res., 34: 1111–1117. Perez-Sanchez, J., Le Bail, P.-Y., 1999. Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture, 177: 117–128. Promya, J., Chitmanat, C., 2011. The effects of Spirulina platensis and Cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the African sharptooth catfish (Clarias gariepinus). Int. J. Agric. Biol., Vol. 13, No. 1. Prunet, P., Boeuf, G., Bolton, J. P., Young, G., 1989. Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): plasma prolactin, growth hormone, and thyroid hormones. General and Comparative Endocrinology, 74: 355-364. Radhakrishnan, S., Bhavan, P. S., Seenivasan, C., Shanthi, R., Muralisankar, T., 2013. Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic & Applied Zoology, Vol. 10., 1016: 003. Refstie, S., Storebakken, T., Roem, A.J., 1998. Feed consumption and conversion in Atlantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture, 162: 301– 312. Regost, C., Arzel, J., Kaushik, S., 1999. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima). Aquaculture, 180: 99–117. Reinecke, M., Zaccone, G., Kapoor, B. G., 2006. Insulin-like growth factor I and II in fish. In: Reinecke, M., Zaccone, G., Kapoor, B. G., editors. Fish endocrinology, vol 1. Enfield, NH: Science Publishers: 87–130. Robaina, L., Moyano, F. J., Izquierdo, M. S., Socorro, J., Vergara, J. M., Montero, D., 1997. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): Nutritional and histological implications. Aquaculture, 157: 347-359. Romay, C., Gonzalez, R., Ledon, N., Remirez, D., Rimbau, V., 2003. C-phycocyanin: a biliprotein with antioxidant, anti-Inflammatory and neuroprotective effects. Current Protein and Peptide Science, 4: 207-216. Ross, E., Dominy, W., 1990. The nutritional value of dehydrated, blue-green algae (Spirulina platensis) for poultry. Poultry Science, 69: 794-800. Rowland, S.J., 1995b. High density pond culture of silver perch, Bidyanus bidyanus. Asian Fisheries Science, 8: 73-79. Sanchez-Gurmaches, J., Cruz-Garcia, L., Ibarz, A., Fernandez-Borras, J., Blasco, J., Gutierrez, J., Navarro, I., 2013. Insulin, IGF-I, and muscle MAPK pathway responses after sustained exercise and their contribution to growth and lipid metabolism regulation in gilthead sea bream. Domestic Animal Endocrinology, 45: 145–153. Sakamoto, T., Iwata, M., Hirano, T., 1991. Kinetic studies of growth hormone and prolactin during adaptation of coho salmon, Oncorhynchus kisutch, to different salinities. General and Comparative Endocrinology, 82: 184-191. Sakamoto, T., Hirano, T., McCormick, S. D., Madsen, S. S., Nishioka, R. S., Bern, H. A., 1994. Possible mode of seawater-adapting actions of growth hormone in salmonids. Aquaculture, 121: 289-300. Santiago, C. B., Pantastico, J. B., Baldia S. F., Reyes, O. S., 1989. Milkfish (Chanos chanos) fingerling production in freshwater ponds with the use of natural and artificial feeds. Aquaculture, 77: 307-318. Sacheck, J. M., Ohtsuka, A., McLary, S.C., Goldberg, A.L., 2004. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab., 287: E591–E601. Schmitz, M., Berglunda, I., Lundqvist, H., Bjornsson, B. T., 1994. Growth hormone response to seawater challenge in Atlantic salmon, Salmo salar, during Parr-smolt transformation. Aquaculture, 121: 209-221. Shiau, S. Y., Chuang, J. L., Sun, C. L., 1987. Inclusion of soybean meal in tilapia (Oreochromis niloticus × O. aureus) diets at two protein levels. Aquaculture, 65: 251-261. Shiau, S.Y., Huang, S. L., 1989. Optimal dietary protein level for hybrid tilapia (Oreochromis niloticus × O. aureus) reared in seawater. Aquaculture, 81: 119-127. Singh, R. K., Chavan, S. L., Desai, A. S., Khandagale, P. A., 2008. Influence of dietary protein levels and water temperature on growth, body composition and nutrient utilization of Cirrhinus mrigala (Hamilton, 1822) fry. Journal of Thermal Biology, 33: 20-26. Stanley, J. G., Jones, J. B., 1976. Feeding algae to fish. Aquaculture, 7: 219-223. Takeuchi, T., Watanabe, T., Ogino, C., 1979. Optimum ratio of dietary energy to protein for carp. Bull. Jpn. Soc. Fish., 45: 983-987. Teimouri, M., Amirkolaie, A. K., Yeganeh, S.,2013. The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, 396–399: 14–19. Thissen, J.P., Ketelslegers, J.M., Underwood, L.E., 1994. Nutritional regulation of the insulin-like growth factors. Endocr. Rev., 15: 80–101. Thissen, J.P., Underwood, L.E., Ketelslegers, J.M., 1999. Regulation of insulin‐like growth factor-I in starvation and injury. Nutr. Rev. 57: 167–176. Tsai, H. J., Hsih, M. H., Kuo, J. C., 1997. Escherichia coli-produced fish growth hormone as a feed additive to enhance the growth of juvenile black seabream (Acanthopagrus schlegeli). J. Appl. Ichthyol., 13: 79-82. Upton, Z., Francis, G. L., Chan, S. J., Steiner, D. F., Wallace, J. C., Ballard, F. J., 1997. Evolution of insulin-like growth factor (IGF) function: production and characterization of recombinant hagfish IGF. General and Comparative Endocrinology, 105: 79-90. Viola, S., Mokady, S., Rappaport, U., Arieli, Y., 1981. Partial and complete replacement of fishmeal by soybean meal in feeds for intensive culture of carp. Aquaculture, 26: 223-236. Wang, K., Takeuchi, T., Watanabe, T., 1985. Optimum protein and digestible energy levels in diets for Tilapia niloticus. Nippon Suisan Gakkaishi, 51: 141-146. Watanabe, T., Liao, W. L., Takeuchi, T., Yamamoto, H., 1990. Effect of dietary Spirulina supplementation on growth performance and flesh lipids of cultured striped jack. J. Tokyo Univ. Fish., 77: 231-239. Watanuki, H., Ota, K., Tassakka, A. C. M. A.R., Kato, T., Sakai, M., 2006. Immunostimulant effects of dietary Spirulina platensis on carp Cyprinus carpio. Aquaculture, 258: 157–163. Webster, C.D., Tidwell, J.H., Goodgame, L.S., Yancey, D.H., Mackey, L., 1992a. Use soybean meal and distillers grains with solubles as partial or total replacement of fish meal in diets for channel catfish, Ictalurus punctatus. Aquaculture, 106:301-309. Webster, C.D., Yancey, D.H., Tidwell, J.H., 1992b. Effect of partially or totally replacing fish meal with soybean meal on growth of blue catfish (Zctalurus furcatus). Aquaculture, 103:141-152. Wilson, R. P., Poe, W. E., 1985. Relationship of whole body and egg essential amino acid patterns to amino acid requirement patterns in channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol., 2: 385-388. Wu, Y. V., Rosati, R.R., Sessa, D.J., Brown, P.B., 1995. Evaluation of corn gluten meal as a protein source in tilapia diets. J. Agric. Food Chem., 43: 1585–1588. Yang, Y., Park, Y., Cassada, D. A., Snow, D. D., Rogers, D. G., Lee, J., 2011. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kutzing and Spirulina plantensis. Food and Chemical Toxicology, 49: 1560–1564. Yao, K., Niu, P. D., Le Gac, F., Le Bail, P.-Y., 1991. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor. General and Comparative Endocrinology, 81: 72-82. Yap, T. N., Wu, J. F., Pond, W. G., Krook, L., 1982. Feasibility of feeding Spirulina maxima, Arthrospira platensis or Chlorella sp. to pigs weaned to a dry diet at 4 to 8 days of age. Nutritional Reports International, 25: 543-552. Yoshida, M., Hoshii, H., 1980. Nutritive value of Spirulina, green algae, for poultry feed. Jpn. Poult Sci., 17: 27-30. Zeitoun, I. H., Halver, J. E., Ullrey, D. E., Tack, P. I., 1973. Influence of Salinity on Protein Requirements of Rainbow Trout (Salmo gairdneri) Fingerlings. J. Fish. Res. Board. Can., 30: 1867-1873. Zhong, G. F., Hua, X. M., Yuan, K., Zhou, H. Q., 2011. Effect of CGM on growth performance and digestibility in puffer (Takifugu fasciatus). Aquacult. Int., 19: 395–403. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57319 | - |
| dc.description.abstract | 菊池氏細鯽(Aphyocypris kikuchii),為台灣特有種。常見於台灣東部的宜蘭、花蓮及台東的河川、湖沼等流速較緩的水域中。但是近年來由於人們對於其需求大增而過度捕撈,加上棲地破壞,使其於天然水域中大量減少。目前花蓮縣水產培育所已透過人工苗的生產放流進行復育,對此魚種飼料的開發將有助於復育工作。螺旋藻(Spirulina platensis)有很高的蛋白質含量(60-70%),胺基酸組成與其他成本較高之飼料原料相似,另亦含豐富的維他命、礦物質、必需脂肪酸(γ-亞麻油酸,γ-linolenic acid—GLA)以及抗氧化色素例如類胡蘿蔔素,因此經常被用作飼料營養添加或甚至取代某些原料。
實驗一探討飼料中添加螺旋藻粉(Spirulina platensis)取代玉米筋質粉對菊池氏細鯽魚成長之影響。共有5組,分別為-玉米筋質粉20%、螺旋藻粉0%,Spi.0;玉米筋質粉15%、螺旋藻粉5%,Spi.5;玉米筋質粉10%、螺旋藻粉10%,Spi.10;玉米筋質粉5%、螺旋藻粉15%,Spi.15;玉米筋質粉0%、螺旋藻粉20%,Spi.20。實驗的菊池氏細鯽平均初始體重0.60 ± 0.09g,每組15隻3個重複為期9週。結果顯示,Spi.15組有最高增重率、飼料效率、蛋白質效率及每日氮增量,皆較對照組佳,各組皆無死亡。 由於文獻中皆指出此魚種有生長較緩慢的情形,因此於實驗二各添加0.5%重組類胰島素成長因子I,飼料其餘成分比例皆與實驗一各組相同,探討對菊池氏細鯽成長的影響。實驗魚隻平均初始體重0.78±0.04g,每組10隻3個重複為期9週。結果顯示,Spi.15組同樣於各項數據有最佳表現。 實驗結果顯示,無論飼料中是否添加成長因子,以螺旋藻粉含量15%的Spi.15組之各項數據皆為最佳,而添加重組類胰島素成長因子I的實驗二各組皆較實驗一的相對應組別有明顯較佳增重率。因此推測以螺旋藻粉取代15%的玉米筋質粉對菊池氏細鯽有最佳成長效果,且若飼料中添加微量成長因子對菊池氏細鯽的成長亦有明顯助益。 | zh_TW |
| dc.description.abstract | The first part of this study evaluate the effects of diets containing 20% of corn gluten meal, and substituting 0, 25, 50, 75 and 100% Spirulina platensis for that, i.e. Spirulina platensis accounts for 0, 5, 10, 15, 20% of the feed formula respectively, on growth performance of kikuchii minnow (Aphyocypris kikuchii). A completely randomized experimental design is developed with the abovementioned five treatments and three replicates. 225 kikuchii minnow with average initial weight of 0.60 ± 0.09g are assigned to 5 experimental tanks. The experiment lasts for 9 weeks. Kikuchii minnows fed with 15% S. platensis show a significantly higher weight gain、feed efficiency、protein efficiency ratio and daily N increase than those which are fed with 0% S. platensis (p<0.05).
According to previous studies, kikuchii minnow often has a relatively lower growth rate. That further leads to the second part of this study, which not only contains the same 5 groups of feed formula as the first one, but supplements each one with 0.5% recombinant insulin-like growth factor Ⅰ(IGF-Ⅰ). The average initial weight of 150 kikuchii minnow is 0.78±0.04g. The group fed with 15% S. platensis also shows significantly higher performances in all parameters than those which are fed with 0% S. platensis (p<0.05). Both parts of the study show no casualty. The present results demonstrate that S. platensis could be introduced as a substitute in kikuchii minnow diets without compromising their growth and might even be a booster. The improved growth and feed utilization are probably due to enhancement of protein assimilation. As the results indicate, the proper dietary Spirulina meal level is 15%. In addition, supplementing with 0.5% IGF-Ⅰwill cast a positive effect on their growth performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:41:31Z (GMT). No. of bitstreams: 1 ntu-103-R99B45021-1.pdf: 1341950 bytes, checksum: 961e0034849d750cbeda8253cfbac88b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝...............................................................................................................I
摘要 ...................................................................................................................... II Abstract ................................................................................................................ IV 目 錄.................................................................................................................. VI 表目錄…………………………………………………………………………VII 圖目錄………………………………………………………………………...VIII 前言 ....................................................................................................................... 1 實驗一、飼料中添加螺旋藻粉取代玉米筋質粉對菊池氏細鯽成長之影響。 壹、 材料與方法 ........................................................................................... 9 貳、 結果……….. ....................................................................................... 13 參、 討論 ..................................................................................................... 15 實驗二、飼料中添加重組類胰島素成長因子I對菊池氏細鯽成長之影響。 壹、 材料與方法 ......................................................................................... 21 貳、 結果……….. ....................................................................................... 22 參、 討論 ..................................................................................................... 24 結論...................................................................................................................... 26 參考文獻……….................................................................................................. 27 表與圖.................................................................................................................. 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 菊池氏細鯽 | zh_TW |
| dc.subject | 成長 | zh_TW |
| dc.subject | 螺旋藻粉 | zh_TW |
| dc.subject | 玉米筋質粉 | zh_TW |
| dc.subject | 每日氮增量 | zh_TW |
| dc.subject | 蛋白質效率 | zh_TW |
| dc.subject | 重組類胰島素成長因子I | zh_TW |
| dc.subject | daily N increase | en |
| dc.subject | growth | en |
| dc.subject | protein efficiency ratio | en |
| dc.subject | recombinant insulin-like growth factorⅠ | en |
| dc.subject | Corn gluten meal | en |
| dc.subject | Spirulina meal | en |
| dc.subject | Kikuchi minnow | en |
| dc.title | 飼料中添加螺旋藻粉及重組類胰島素成長因I
對菊池氏細鯽成長之影響 | zh_TW |
| dc.title | Effects of feed supplementing with Spirulina meal (Spirulina platensis) and recombinant insulin-like growth factorⅠ on growth performance of
Kikuchi minnow (Aphyocypris kikuchii) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉信利,丁雲源,黃大駿 | |
| dc.subject.keyword | 菊池氏細鯽,螺旋藻粉,玉米筋質粉,重組類胰島素成長因子I,蛋白質效率,每日氮增量,成長, | zh_TW |
| dc.subject.keyword | Kikuchi minnow,Spirulina meal,Corn gluten meal,recombinant insulin-like growth factorⅠ,protein efficiency ratio,daily N increase,growth, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-29 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
