Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇
dc.contributor.authorWei-Chi Hsiehen
dc.contributor.author謝煒騏zh_TW
dc.date.accessioned2021-06-16T06:41:25Z-
dc.date.available2016-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-07-29
dc.identifier.citationREFERENCES
1. Weigelt, B., et al., Breast cancer metastasis: markers and models. Nat Rev Cancer, 2005. 5(8): p. 591-602.
2. Siegel, R., et al., Cancer statistics, 2014. CA Cancer J Clin, 2014. 64(1): p. 9-29.
3. Morris, P.G., et al, Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother, 2009. 10(6): p. 967-81.
4. O'Shaughnessy, J., Extending survival with chemotherapy in metastatic breast cancer. Oncologist, 2005. 10 Suppl 3: p. 20-9.
5. Guarneri,V.,et al., Metastatic breast cancer: therapeutic options according to molecular subtypes and prior adjuvant therapy. Oncologist, 2009. 14(7): p. 645-56.
6. Acconcia, F.,et al., Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett, 2006. 238(1): p. 1-14.
7. Bjornstrom, L.,et al., Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol, 2005. 19(4): p. 833-42.
8. Bertolino, F., et al., Unscaled Bayes factors for multiple hypothesis testing in microarray experiments. Stat Methods Med Res, 2012.
9. Khatri, P., et al., Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol, 2012. 8(2): p. e1002375.
10. Ideker, T., et al., Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 2002. 18 Suppl 1: p. S233-40.
11. Mani, K.M., et al., A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol, 2008. 4.
12. Ideker, T., et al., Differential network biology. Mol Syst Biol, 2012. 8: p. 565.
13. Taylor, I.W., et al., Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol, 2009. 27(2): p. 199-204.
14. Chuang, H.Y., et al., Network-based classification of breast cancer metastasis. Mol Syst Biol, 2007. 3: p. 140.
15. Metivier, R., et al., Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 2003. 115(6): p. 751-63.
16. Workman, C.T., et al., A systems approach to mapping DNA damage response pathways. Science, 2006. 312(5776): p. 1054-9.
17. Sumazin, P., et al., An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011. 147(2): p. 370-81.
18. Chun, S.Y., et al., Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes. Mol Cancer, 2010. 9: p. 293.
19. Stelniec-Klotz, I., et al., Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS. Mol Syst Biol, 2012. 8: p. 601.
20. Shen, C., et al., A modulated empirical Bayes model for identifying topological and temporal estrogen receptor alpha regulatory networks in breast cancer. BMC Syst Biol, 2011. 5: p. 67.
21. Van 't Veer, L.J., et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002. 415(6871): p. 530-6.
22. Gambardella, G., et al., Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics, 2013. 29(14): p. 1776-85.
23. Margolin, A.A., et al., ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 2006. 7 Suppl 1: p. S7.
24. Hansen, M., et al., Mimosa: mixture model of co-expression to detect modulators of regulatory interaction. Algorithms Mol Biol, 2010. 5: p. 4.
25. Wang, K., et al., Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol, 2009. 27(9): p. 829-39.
26. Tay, Y., et al., Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011. 147(2): p. 344-57.
27. Karreth, F.A., et al., In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 2011. 147(2): p. 382-95.
28. Hsiao, T.-H., et al., Modeling Estrogen Receptor Modulated Gene Set Regulatory Networks in Breast Cancer. 2014.
29. Mason, O., et al., Graph theory and networks in Biology. IET Syst Biol, 2007. 1(2): p. 89-119.
30. Langfelder, P., et al., Is My Network Module Preserved and Reproducible? PLoS Comput Biol, 2011. 7(1).
31. Pavlopoulos, G.A., et al., Using graph theory to analyze biological networks. BioData Min, 2011. 4.
32. Wu, H.Y., et al., A modulator based regulatory network for ERalpha signaling pathway. BMC Genomics, 2012. 13 Suppl 6: p. S6.
33. Zou, M., et al., A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005. 21(1): p. 71-9.
34. Barrett, T., et al., NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res, 2011. 39: p. D1005-D1010.
35. Wang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 2005. 365(9460): p. 671-9.
36. Sotiriou, C., et al., Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst, 2006. 98(4): p. 262-72.
37. Hatzis, C., et al., A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA, 2011. 305(18): p. 1873-81.
38. Cancer Genome Atlas, N., Comprehensive molecular portraits of human breast tumours. Nature, 2012. 490(7418): p. 61-70.
39. Flores, M., et al., Gene regulation, modulation, and their applications in gene expression data analysis. Adv Bioinformatics, 2013. 2013: p. 360678.
40. Minas, C., et al., A distance-based test of association between paired heterogeneous genomic data. Bioinformatics, 2013. 29(20): p. 2555-2563.
41. Jurman, G., et al., Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics, 2008. 24(2): p. 258-64.
42. Emran, S.M.,et al., Robustness of Chi-square and Canberra distance metrics for computer intrusion detection. Qual Reliab Eng Int, 2002. 18(1): p. 19-28.
43. Ben-Hamo, R., et al., MicroRNA-Gene Association As a Prognostic Biomarker in Cancer Exposes Disease Mechanisms. PLoS Comput Biol, 2013. 9(11).
44. Marcucci, G., et al., Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol, 2014. 32(6): p. 548-56.
45. Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30.
46. Bailey, S.T., et al., Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci USA, 2012. 109(44): p. 18060-18065.
47. Fernandez-Cuesta, L., et al., Estrogen levels act as a rheostat on p53 levels and modulate p53-dependent responses in breast cancer cell lines. Breast Cancer Res Treat, 2011. 125(1): p. 35-42.
48. Li, J., et al., DNA copy number aberrations in breast cancer by array comparative genomic hybridization. Genomics Proteomics Bioinformatics, 2009. 7(1-2): p. 13-24.
49. Moerkens, M., et al., Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer, 2014. 14(1): p. 283.
50. Deroo, B.J.,et al., Estrogen receptors and human disease. J Clin Invest, 2006. 116(3): p. 561-70.
51. Kuemmerle, N.B., et al., Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol Cancer Ther, 2011. 10(3): p. 427-36.
52. Viegas, M.S., et al., CD38 plays a role in effective containment of mycobacteria within granulomata and polarization of Th1 immune responses against Mycobacterium avium. Microb Infect, 2007. 9(7): p. 847-854.
53. Gu-Trantien, C., et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest, 2013. 123(7): p. 2873-92.
54. Zaunders, J.J., et al., Early proliferation of CCR5(+) CD38(+++) antigen-specific CD4(+) Th1 effector cells during primary HIV-1 infection. Blood, 2005. 106(5): p. 1660-7.
55. Staub, E., et al., An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med (Berl), 2009. 87(6): p. 633-44.
56. Couch, F.J., et al., AURKA F31I polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a consortium of investigators of modifiers of BRCA1/2 study. Cancer Epidemiol Biomarkers Prev, 2007. 16(7): p. 1416-21.
57. Staff, S., et al., Aurora-A gene is frequently amplified in basal-like breast cancer. Oncol Rep, 2010. 23(2): p. 307-12.
58. Das, K., et al., Aurora-A expression, hormone receptor status and clinical outcome in hormone related cancers. Pathology, 2010. 42(6): p. 540-6.
59. Chen, X.,et al., Integrating biological knowledge with gene expression profiles for survival prediction of cancer. J Comput Biol, 2009. 16(2): p. 265-78.
60. Nikas, J.B., et al., Prognosis of treatment response (pathological complete response) in breast cancer. Biomark Insights, 2012. 7: p. 59-70.
61. Whiteside, T.L.,et al., For breast cancer prognosis, immunoglobulin kappa chain surfaces to the top. Clin Cancer Res, 2012. 18(9): p. 2417-9.
62. Weinstein, J.N., et al., The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 2013. 45(10): p. 1113-1120.
63. Carroll, J.S., et al., Genome-wide analysis of estrogen receptor binding sites. Nat Genet, 2006. 38(11): p. 1289-97.
64. Heemers, H.V., et al., Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev, 2007. 28(7): p. 778-808.
65. Wang, K., et al., Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes. RECOMB, 2006. 3909: p. 348-362.
66. Wang, L., et al., BRCA1 is a negative modulator of the PRC2 complex. EMBO J, 2013. 32(11): p. 1584-1597.
67. Hu, Z., et al., The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 2006. 7: p. 96.
68. Jene-Sanz, A., et al., Expression of Polycomb Targets Predicts Breast Cancer Prognosis. Mol Cell Biol, 2013. 33(19): p. 3951-3961.
69. Ahn, S.G., et al., Prognostic Discrimination Using a 70-Gene Signature among Patients with Estrogen Receptor-Positive Breast Cancer and an Intermediate 21-Gene Recurrence Score. Int J Mol Sci, 2013. 14(12): p. 23685-23699.
70. Garcia-Pravia, C., et al., Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer. PLoS One, 2013. 8(10): p. e78327.
71. Kim, H., et al., Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics, 2010. 3: p. 51.
72. Marchionni, L., et al., A simple and reproducible breast cancer prognostic test. BMC Genomics, 2013. 14: p. 336.
73. Gilkes, D.M., et al., Procollagen Lysyl Hydroxylase 2 Is Essential for Hypoxia-Induced Breast Cancer Metastasis. Mol Cancer Res, 2013. 11(5): p. 456-466.
74. Comen, E.A., et al., Breast Cancer Tumor Size, Nodal Status, and Prognosis: Biology Trumps Anatomy. J Clin Oncol, 2011. 29(19): p. 2610-2612.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57316-
dc.description.abstract隨著生物晶片技術的純熟,利用統計檢驗來分析差異表現基因是目前最常用的策略。近年來,已有大量的研究去檢測重要的差異表現基因,透過其基因調控、可讓我們更加了解癌症分子的作用機制及提供有效預後診斷。然而, 此方法找出的基因調控關係、往往只存在於某種特定情況,是一種靜態的表徵, 卻忽略了事實上基因在細胞間調控關係是一個動態的過程。因此,動態基因調控網路分析可提供更好的詮釋,讓我們理解複雜的生物現象。在癌症裡,動態基因調控關係會被某些重要的調節基因(modulator gene)所影響,特別是,當調節基因高度或低度表現時。已有報導指出, 致癌基因或是腫瘤抑制基因會藉由扮演調節基因的角色來影響基因的功能,例如乳癌中的雌激素受體( estrogen receptor, ER)。目前已有幾數種分析單一調節基因調控網路的計算方法。然而系統化且全基因組檢測重要調節基因卻是前所未有的。
在本篇的研究中,我們利用了一個Fisher 轉換的統計模型,藉由分析乳癌病人的基因表現量,整體性地鑑定關鍵調節基因。我們設計了兩個參數Con及DGC來衡量調節基因調控基因網路的強弱。ESR1是一個已被廣泛研究的調節基因,在本篇分析中,兩個參數也顯示ESR1確實具有顯著能力調節基因網路,足以證明該方法確實可以鑑定具有代表性的調節基因。因此,我們找出了237個關鍵調節基因,其中51個調節基因具有比ESR1更強的能力調節基因網路。為了驗證調節基因的可靠性,我們採用歸一化坎培拉距離(Canberra distance)來衡量兩個參數在跨乳癌資料組中調節基因能力排名的相似度。
為了探討237個關鍵調節基因所影響的生物功能,我們建立了調節基因
調控的基因網路。隨著調節基因狀態的不同,我們發現新的樞紐基因(hub gene)調 控基因的關係與其相關的生物功能。此外,我們還找出15個關鍵調節基因會因其狀態不同而影響病人的存活率,並可在跨乳癌資料組中得到驗證。
在本研究中,我們綜合性地分析乳癌中的每個調控基因的基因網路。期盼藉此可以加深我們對調節基因網路的認知及系統性的影響,幫助我們在癌症中發現複雜的基因調控機制。
zh_TW
dc.description.abstractWith well-developed technology in microarray, using statistical tests to analyze microarray data is one of the most common strategies to identify differentially expressed genes. In recent years, tremendous efforts have been made to discover gene regulation among differentially expressed genes to provide insights into the molecular mechanisms and effective prognosis in cancers. However, such gene interactions have focused on certain static cellular conditions, ignoring the fact that interaction among genes in cells is a dynamic process. Dynamic gene regulation networks analysis provide better interpretation and understanding for complex biological phenomena. In cancers, the dynamic gene regulation can be modulated by some key modulator genes. That is some inter-gene regulation can be strengthened (or weakened) specifically, when certain modulator genes are over- or under-expressed. Some oncogenes or tumor suppressors have been reported to perform their function through acting as modulator genes, such as estrogen receptor (ER) in breast cancers. Several computational methods were developed to dissect the modulated regulatory networks under single modulator gene. However, systematic and genome-wide screening of novel modulator genes is not previously explored.
In the study we developed a statistical model based on Fisher transformation analysis pipeline for comprehensively identifying key modulator genes from genome-wide expression profiling of breast cancer. We designed two parameters, connectivity (Con), and degree of genome-wide change (DGC), to measure the modulation strength. In our data, ESR1, the most well-studied modulator gene, exhibited significant power of modulation in both parameters, revealing that the proposed model was sensitive and capable of identifying modulators. Therefore, we identified 237 key modulator genes, 51 of them with higher power than ESR1. In order to statistically evaluate the robustness of the proposed model, we employed the normalized Canberra distance to measure similarity among the ranked lists of modulator genes in the discovery dataset and three independent validation datasets.
For biological interpretation of these 237 identified key modulators, regulatory networks governed by these modulators were constructed. We identified novel regulation and functional interaction of hub gene under specific modulator gene status. Furthermore, 15 survival-associated modulator genes, which dependent on modulator gene status were identified and verified in the validation datasets.
In summary, we provided a comprehensive analysis of measuring gene regulation by each modulator gene and constructed modulated gene regulation networks in breast cancer. We expect that the modulator identification of the gene interactions will further enhance our understanding in gene interaction and systemic influence to discover complex genetic regulations in cancers.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:41:25Z (GMT). No. of bitstreams: 1
ntu-103-R01945044-1.pdf: 4958144 bytes, checksum: be393ff149ee1e7bfe830d918abc7043 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Breast cancer 1
1.2 Limitation of differential gene expression analysis 2
1.3 Dynamic modularity network 3
1.4 Current algorithms for inferring dynamic regulation………………...…......4
1.5 Graph theory analysis for biological network 6
1.6 Specific aims of this study …………………………………………………6
Chapter 2 Materials and Methods 8
2.1 Microarray data preparation and modulator status definition……………….8
2.2 Construction of modulated gene regulatory networks for each modulator gene……………………………………………………………………...…10
2.3 Identification of key modulator genes 12
2.4 Stability of parameters in validation datasets……………………………....14
2.5 Survival analysis of key modulator genes…………………………….……15
2.6 Visualization and funtional analysis of modulated regulatory network….....16
Chapter 3 Results 20
3.1 Model overview 20
3.2 Identification of key modulator genes 20
3.3 Robustness of parameters in validation datasets ……………………….....25
3.4 Biological interpretation of the identified key modulator genes……….…27
3.5 The survival-associated of the identified key modulator genes…………..36
Chapter 4 Discussion 43
Chapter 5 Conclusion 49
References……………………………………………………………………………...50
dc.language.isozh-TW
dc.subject乳癌zh_TW
dc.subject基因調控網路zh_TW
dc.subject調節基因zh_TW
dc.subject雌激素受體1zh_TW
dc.title在乳癌中全基因組鑑定調節基因zh_TW
dc.titleGenome-Wide Identification of Key Modulator Genes in
Breast Cancer
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡孟勳,賴亮全,阮雪芬,歐陽彥正
dc.subject.keyword乳癌,基因調控網路,調節基因,雌激素受體1,zh_TW
dc.subject.keywordbreast cancer,gene regulatory network,modulator gene,ESR1,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved