請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57315
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 萬本儒(Ben-Zu Wan) | |
dc.contributor.author | Ting-Yi Li | en |
dc.contributor.author | 李庭逸 | zh_TW |
dc.date.accessioned | 2021-06-16T06:41:23Z | - |
dc.date.available | 2024-07-28 | |
dc.date.copyright | 2014-08-01 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-29 | |
dc.identifier.citation | 1. T. Maesen, Studies in Surface Science and Catalysis, 168, (2007) 1–12.
2. E. M. Flanigen, Studies in Surface Science and Catalysis, 137, (2001) 11–35. 3. J.W. McBain, The Sorption of Gases and Vapors by Solids, Rutledge and Sons, London (1932). 4. E. R. Geus, M. J. den Exter, and H. van Bekkum, Journal of the Chemical Society Faraday Transactions, 88 (1992) 3101–3109. 5. R. D. Noble and J. L. Falconer, Catalysis Today, 25 (1995) 209–212. 6. F. Kapteijn, W. J. W. Bakker, J. van de Graaf, G. Zheng, J. Poppe, and J. A. Moulijn, Catalysis Today, 25 (1995) 213–218. 7. G-.F. Anne, J. Peureux, H. Mozzanega, and J.-A. Dalmon, Studies in Surface Science and Catalysis, 101 (1996) 127–136. 8. J. N. Armor, Journal of Membrane Science, 147 (1998) 217–233. 9. E. Piera, A. Giroir-Fendler, J. A. Dalmon, H. Moueddeb, J. Coronas, M. Menendez, and J. Santamaria, Journal of Membrane Science, 142 (1998) 97–109. 10. J. Coronas and J. Santamaria, Catalysis Today, 51 (1999) 377–389. 11. J. M. van de Graaf, M. Zwiep, F. Kapteijn, and J. A. Moulijn, Applied Catalysis A: General, 178 (1999) 225–241 12. J. Coronas and J. Santamaria, Separation and Purification Methods, 28 (1999) 127–177. 13. F. Mizukami, Studies in Surface Science and Catalysis, 125 (1999) 1–12. 14. A. Tavolaro and E. Drioli, Advanced Materials, 11 (1999) 975–996. 15. C. M. Lew, R. Cai, and Y. Yan, Accounts of Chemical Research, 43 (2010) 210–219. 16. The International Zeolite Association (IZA), http://www.iza-online.org/ 17. S. M. Auerbach, K. A. Corrado, and P. K. Dutta, Handbook of Zeolite Science and Technology, Marcel Dekker, New York (2003). 18. S. T. Oyama and S. M. Stagg-Williams, Inorganic Polymeric and Composite Membranes: Structure, Function and Other Correlations, Elsevier, The Netherlands (2011). 19. C. S. Cundy and P. A. Cox, Chemical Reviews, 103 (2003) 663-701. 20. M. Zaarour, B. Dong, I. Naydenova, R. Retoux, and S. Mintova, Microporous and Mesoporous Materials, 189 (2014) 11-21. 21. G. Bellussi, A. Carati, C. Rizzo, and R. Millini, Catalysis Science & Technology, 3 (2013) 833-857. 22. C. Liu, W. Gu, D. Kong, and H. Guo, Microporous and Mesoporous Materials, 183 (2014) 30–36. 23. M. Jafari, A. Nouri, M. Kazemimoghadam, and T. Mohammadi, Powder Technology, 237 (2013) 442–449. 24. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, USA, (2002). 25. W. D. Callister, Jr., Materials Science and Engineering: An Introduction, John Wiley & Sons, USA, (2003). 26. J. H. Lienhard, A heat transfer textbook, Prentice-Hall, Englewood Cliffs, N.J., (1981). 27. The International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2012ITRS/Home2012.htm (2012) 28. H. Deligianni, Meeting Abstracts, MA 2005–02 (2005) 1303 (208th Meeting of The Electrochemical Society - Meeting Abstracts). 29. W.W. Lee and P.S. Ho, MRS Bulletin, 22 (1997) 19–23. 30. C.-T. Tsai, H.-Y. Lu, C.-Y. Ting, W.-F. Wu, and B.-Z. Wan, Thin Solid Films, 517 (2009) 2039–2043. 31. D. Wang and G. P. Bierwagen, Progress in Organic Coatings, 64 (2009) 327–338. 32. X. Cheng, Z. Wang and Y. Yan, Electrochemical and Solid-State Letters, 4 (2001) B23–B26. 33. A. Mitra, Z. Wang, T. Cao, H. Wang, L. Huang and Y. Yan, Journal of The Electrochemical Society, 149 (2002) B472–B478. 34. D. E. Beving, A. M. P. McDonnell, W. Yang, and Y. Yan, Journal of The Electrochemical Society, 153 (2006) B325–B329. 35. R. Cai and Y. Yan, Corrosion, 64 (2008) 271–278. 36. Y. Dong, Y. Peng, G. Wang, Z. Wang, and Y. Yan, Journal of Industrial & Engineering Chemistry Research, 51 (2012), 3646–3652. 37. O. Kesmez, E. Burunkaya, N. Kiraz, H. E. Camurlu, M. Asilturk, and E. Arpac, Journal of Non-Crystalline Solids, 357 (2011) 3130–3135. 38. H.A. Macleod, Thin Film Optical Filters, vol. 3, Institute of Physics Pub, Bristol and Philadelphia (2001). 39. C.-H. Chen, S.-Y. Li, A. S. T. Chiang, A. T. Wu, and Y. S. Sun, Solar Energy Materials & Solar Cells, 95 (2011) 1694–1700. 40. O. de la Iglesia, V. Sebastian, R. Mallada, G. Nikolaidis, J. Coronas, G. Kolb, R. Zapf, V. Hessel, and J. Santamaria, Catalysis Today, 125 (2007) 2–10. 41. V. Sebastian, O. de la Iglesia, R. Mallada, L. Casado, G. Kolb, V. Hessel, and J. Santamaria, Microporous and Mesoporous Materials, 115 (2008) 147–155. 42. V. Sebastian, S. Irusta, R. Mallada, and J. Santamaria, Catalysis Today, 147S (2009) S10–S16. 43. N. C. Perez, E. E. Miro, and J. M. Zamaro, Applied Catalysis B: Environmental, 129 (2013) 416–425. 44. M.R. Othman, S.C. Tan, and S. Bhatia, Microporous and Mesoporous Materials, 121 (2009) 138–144. 45. J. C. White, P. K. Dutta, K. Shqau, and H. Verweij, Langmuir, 26 (2010) 10287–10293. 46. S. M. Kwan, A. Y. L. Leung, K. and L. Yeung, Separation and Purification Technology, 73 (2010) 44–50. 47. M. Tawalbeh, F. H. Tezel, S. Letaief, C. Detellier, and B. Kruczek, Separation Science and Technology, 47 (2012) 1606–1616. 48. Y. Zhang, J. Sunarso, S. Liu, and R. Wang, International Journal of Greenhouse Gas Control, 12 (2013) 84–107. 49. D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, D. Atong, K. Hemra, S. Kulprathipanja, and S. Wongkasemjit, Desalination, 280 (2011) 259–265. 50. M. Drobek, C. Yacou, J. Motuzas, A. Julbe, L. Ding, and J. C.D. da Costa, Journal of Membrane Science, 415–416 (2012) 816–823. 51. C. Yu, C. Zhong, Y. Liu, X. Gu, G. Yang, W. Xing, and N. Xu, Chemical Engineering Research and Design, 90 (2012) 1372–1380. 52. L. Li, J. Dong, T. M. Nenoff, and R. Lee, Journal of Membrane Science, 243 (2004) 401–404. 53. M. Kazemimoghadam, Desalination, 251 (2010) 176–180. 54. P. S. Barcia, A. Ferreira, J. Gascon, S. Aguado, J. A.C. Silva, A. E. Rodrigues, and F. Kapteijn, Microporous and Mesoporous Materials, 128 (2010) 194–202. 55. B. Bayati, Z. Belbasi, M. Ejtemaei, N. C. Aghdam, A. A. Babaluo, M. Haghighi, and E. Drioli, Separation and Purification Technology, 106 (2013) 56–62. 56. S. Mintova and T. Bein, Microporous and Mesoporous Materials, 50 (2001) 159–166. 57. M. Vilaseca, J. Coronas, A. Cirera, A. Cornet, J. R. Morante, and J. Santamaria, Sensors and Actuators B, 124 (2007) 99–110. 58. A. Zampieri, A. Dubbe, W. Schwieger, A. Avhale, and R. Moos, Microporous and Mesoporous Materials, 111 (2008) 530–535. 59. A. Satsuma, D. Yang, and K. Shimizu, Microporous and Mesoporous Materials, 141 (2011) 20–25. 60. Z. Wang, A. Mitra, H. Wang, L. Huang, and Y. Yan, Advanced Materials, 13, (2001) 1463–1466. 61. Z. Wang, H. Wang, A. Hitra, and Y. Yan, Advanced Materials, 13 (2001) 746–749. 62. S. Li, Z. Li, and Y. Yan, Advanced Materials, 15 (2003) 1528–1531. 63. Z. Li, S. Li, H. Luo, and Y. Yan, Advanced Functional Materials, 14 (2004) 1019–1024. 64. S. Eslava, M. R. Baklanov, A. V. Neimark, F. Iacopi, C. E. A. Kirschhock, K. Maex, and J. A. Martens, Advanced Materials, 20 (2008) 3110–3116. 65. S. Eslava, C. E. A. Kirschhock, S. Aldea, M. R. Baklanov, F. Iacopi, K. Maex, and J. A. Martens, Microporous and Mesoporous Materials, 118 (2009) 458–466. 66. M. Johnson, Z. Li, J. Wang, and Y. Yan, Thin Solid film, 515 (2007) 3164–3170. 67. H.-Y. Lu, C.-L. Teng, C.-W. Yu, Y.-C. Liu, and B.-Z.Wan, Journal of Industrial & Engineering Chemistry Research, 49 (2010) 6279–6286. 68. H.-Y. Lu, C.-L. Teng, C.-H. Kung, and B.-Z. Wan, Journal of Industrial & Engineering Chemistry Research, 50 (2011) 3265–3273. 69. H.-Y. Lu, C.-H. Kung, and B.-Z. Wan, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 971–979. 70. W.-C. Changjean, A. S. T. Chiang, and T.-C. Tsai, Thin Solid Films, 529 (2013) 327–332. 71. L. Calabrese, L. Bonaccorsi, and E. Proverbio, Journal of Coatings Technology and Research, 9 (2012) 597–607. 72. S.A.S. Dias, S.V. Lamaka, C.A. Nogueira, T.C. Diamantino, and M.G.S. Ferreira, Corrosion Science, 62 (2012) 153–162. 73. T. L. Metroke, O. Kachurina, and E. T. Knobbe, Progress in Organic Coatings, 44 (2002) 295–305. 74. Y.-C. Hsu, Y.-T. Hsu, H.-Y. Hsu, and C.-M. Yang, Chemistry of Materials, 19 (2007) 1120–1126. 75. Y.-T. Hsu, W.-L. Chen, and C.-M. Yang, Journal of Physical Chemistry C, 113 (2009) 2777–2783. 76. X. Li, and B. Bhushan, Materials Characterization, 48 (2002) 11–36. 77. J.-T. Luo, W.-F. Wu, H.-C. Wen, B.-Z. Wan, Y.-M. Chang, C.-P. Chou, J.-M. Chen, and W.-N. Chen, Thin Solid Films, 515 (2007) 7275–7280. 78. C.-Y. Ting, D.-F. Ouyan, and B.-Z. Wan, Journal of Electrochemical Society, 150, (2003) F164–F167. 79. T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hata, and T. Kikkawa, Journal of Electrochemical Society, 156 (2009) H98–H105. 80. T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hata, and T. Kikkawa, Journal of Electrochemical Society, 158 (2011) H659–H665. 81. P.-T. Liu, T.-C. Chang, H. Su, Y.-S. Mor, Y.-L.Yang, H. Chung, J. Hou, and S.-M. Sze, Journal of Electrochemical Society, 148 (2001) F30–F34. 82. T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei, F. M. Pan, W. F. Wu, and S. M. Sze, Microelectronic Engineering, 60 (2002) 469–475. 83. N. Ahner, S. E. Schulz, F. Blaschta, and M. Rennau, Microelectronic Engineering, 84 (2007) 2606–2609. 84. Y. Uchida, S. Hishiya, N. Fujii, K. Kohmura, T. Nakayama, H. Tanaka, and T. Kikkawa, Microelectronic Engineering, 83 (2006) 2126–2129. 85. A. A. Kumbhar, S. K. Singh, and R. O. Dusane, Thin Solid Films, 501 (2006) 329–331. 86. A. Patist, S. S. Bhagwat, K. W. Penfield, P. Aikens, and D. O. Shah, Journal of Surfactants and Detergents, 3 (2000) 53–58. 87. S. K. Hait and S. P. Moulik, Journal of Surfactants and Detergents, 4 (2001) 303–309. 88. L. S. C. Wanx and P. F. S. Lee, Journal of Pharmaceutical Sciences, 63 (1974) 136–137. 89. T. A. Florence and D. Attwood, Physicochemical Principles of Pharmacy, Pharmaceutical Press, London (2011). 90. J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, p. 282, Wiley-VCH: Weinheim, Germany (1997). 91. D. Myers, Surfactant Science and Technology, 3rd ed., p. 253, John Wiley & Sons, New Jersey (2006). 92. Y. S. Thio, J. Wu, and F. S. Bates, Macromolecules, 39 (2006) 7187–7189. 93. Y. Zhu, W. Tong, C. Gao, and H. M‥ohwald, Langmuir, 24 (2008) 7810–7816. 94. C.-Y. Ting, H.-S. Sheu, W.-F. Wu, and B.-Z. Wan, Journal of Electrochemical Society, 154 (2007) G1–G5. 95. J. Michelon and R. J. O. M. Hoofman, IEEE Transactions on Device and Materials Reliability, 6 (2006) 169–174. 96. R. Tsu, J. W. McPherson, and W. R. McKee, in Proceedings of IEEE International Reliability Physics Symposium (IRPS), pp. 348–353, San Jose, CA (2000). 97. R. J. O. M. Hoofman, G. J. A. M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M. R. Baklanov, Z. T‥okei, and G. P. Beyer, Microelectronic Engineering, 80 (2005) 337–344. 98. A. Grill and D. A. Neumayer, Journal of Applied Physics, 94 (2003) 6697–6707. 99. G. Solomons and C. Fryhle, Organic Chemistry, 7th ed., p. 79, John Wiley & Sons, New York (2000). 100. D. L. Wood and E. M. Rabinovich, Applied Spectroscopy, 43 (1989) 263–267. 101. A. Anderson and W. R. Ashurst, Langmuir, 24 (2008) 7947–7954. 102. F. Ay and A. Aydinli, Optical Materials, 26 (2004) 33–46. 103. R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Mahajan, D. S. Patil, and D. K. Gautam, Optical Materials, 25 (2004) 1–7. 104. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., ch. 4., John Wiley & Sons, New Jersey (2007). 105. S.-J. Ding, C. Zhu, M.-F. Li, and D. W. Zhang, Applied Physics Letters, 87 (2005) 053501. 106. T. D. Anthopoulos and T. S. Shafai, Journal of Physics and Chemistry of Solids, 64 (2003) 1217–1223. 107. M. N. Jones, Y. W. Kwon, and D. P. Norton, Applied Physics A, 81 (2005) 285–288. 108. E. M. Vogel, K. Z. Ahmed, B. Hornung,W. K. Henson, P. K.McLarty, G. Lucovsky, J. R. Hauser, and J. J. Wortman, IEEE Trans. Electron Devices, 45 (1998) 1350–1355. 109. S. Li, Z. Li, D. Medina, C. Lew, and Y. Yan, Chemistry of Materials, 17 (2005) 1851–1854. 110. L. Sierra, B. Lopez, H. Gil, and J.-L. Guth, Advanced Materials, 11 (1999) 307–311. 111. B.R. Midmore, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 145 (1998) 133–143. 112. P. Innocenzi, J. Non-Crystalline Solids, 316 (2003) 309–319. 113. T.-Y. Li, C.-H. Yu, H.-Y. Lu, and B.-Z. Wan, ECS Journal of Solid State Science and Technology, 2 (2013) N61–N68. 114. A.E. Persson, B.J. Schoeman, J. Sterte, and J.-E. Otterstedt, Zeolites, 14 (1994) 557–567. 115. B. Soydas, P. Z. Culfaz, H. Kalıpcilar, and A. Culfaz, Crystal Research and Technology, 44 (2009) 800 – 806. 116. S. Yang and A. Navrotsky, Chemistry of Materials, 16 (2004) 210-219. 117. S. Sakka, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, Kluwer Academic Publishers, New York (2005). 118. P. A. Sorensen, S. Kiil, K. Dam-Johansen, and C. E. Weinell, Journal of Coatings Technology and Research, 6 (2009) 135–176. 119. A.J. Lopez, E. Otero, and J. Rams, Surface & Coatings Technology, 205 (2010) 2375–2385 120. M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M. Miranda Salvado, and M.G.S. Ferreira, Surface & Coatings Technology, 200 (2006) 3084–3094. 121. V.B. Miskovic-Stankovic, M.R. Stanic, and D.M. Drazic, Progress in Organic Coatings, 36 (1999) 53–63. 122. D. V. Andreeva and D. G. Shchukin, Materials Today, 11 (2008) 24–30. 123. Maria Forsyth, Marianne Seter, Bruce Hinton, Glen Deacon, and Peter Junk, Australian Journal of Chemistry, 64 (2011) 812–819. 124. G. Bhargava and F. Allen, Metal Finishing, 110 (2012) 32-38. 125. K. Ogle and R.G. Buchheit, Encyclopedia of Electrochemistry, 4 (2003) 460-499. 126. 周淑金、王正全,「綠色表面處理-六價鉻替代技術的發展」,中華民國電子零件認證委員會,第五十卷,2006,第25-32頁。 127. S. K. Ghosh, Self-healing materials: fundamentals, design strategies, and applications, Wiley WCH, (2009). 128. A. Naraghi and N. Grahmann, U.S. patent 5611992 (1997). 129. J. T. Sanner, G. S. Penny, and R. Padgham, U.S. patent 7,122,509 B2 (2006). 130. E. Bardal, Corrosion and Protection, Springer, London, New York (2004). 131. D.S. Bhange and V. Ramaswamy, Materials Research Bulletin, 41 (2006) 1392–1402. 132. Q. Meng and G. S. Frankel, Surface and interface analysis, 36 (2004) 30–42. 133. J.-W. Kang, M.-J. Ko, Daejeon (KR); M.-S Moon, B.-G. Choi, J.-M. Son, and D.-H. Kang, U.S. patent 7,709,551 B2 (2010). 134. S. Mintova, N. H. Olson, J. Senker, and T. Bein, Angewandte Chemie, 114 (2002) 2670–2673. 135. R. V. Grieken, J.L. Sotelo, J.M. Menendez, and J.A. Melero, Microporous and Mesoporous Materials, 39 (2000) 135–147. 136. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons (Asia) Pte Ltd (2007). 137. J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, Phlogiston Press (2006). 138. Hsin-Yan Lu, Preparation of Mesoporous Low-k Films from Crystalline Pure Silica Zeolite (PSZ) Nanocrystals and from Noncrystalline Silica Nanoparticles, PhD dissertation, Department of chemical engineering, National Taiwan University, Taiwan (2011). 139. S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Technology, Marcel Dekker, New York (2003). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57315 | - |
dc.description.abstract | 本研究利用水熱程序,以四丙基氫氧化銨(TPAOH)作為結構導向試劑,製備含MFI結構的純氧化矽沸石(PSZ)與MFI-like非結晶型氧化矽(NCS)奈米顆粒,並將此奈米顆粒應用於低介電膜及抗腐蝕膜的製備。
研究中討論不同厚度的水熱反應器,對於水熱程序合成奈米顆粒的影響。研究發現,水熱反應的初期升溫速率,對於合成奈米顆粒是重要的。經由熱傳模擬分析,得知當反應器的器壁厚度下降,於水熱反應初期,反應器內部的溫度上升速率較快,因此使水熱程序合成出較大粒徑的顆粒。 關於低介電膜的研究,薄膜是利用純氧化矽沸石奈米顆粒與界面活性劑組成的鍍膜溶液所製備。鍍膜液的製備,至少被三個因素(四丙基氫氧化銨濃度、水熱反應時間、與界面活性劑尾基長度)所影響。研究中利用不同濃度之四丙基氫氧化銨或不同水熱反應時間,製備奈米顆粒;以及使用不同疏水尾基鏈長度的聚山梨醇酯(Polysorbate)界面活性劑。由於純氧化矽沸石奈米顆粒表面的氫氧基數量(或表面親水性),隨著四丙基氫氧化銨濃度的上升或水熱時間的下降而上升,且界面活性劑的親水性隨著尾基長度上升而下降;若使用不同親水性的奈米顆粒與界面活性劑形成的鍍膜液製備薄膜,薄膜將具備不同的性質(例如:介電常數、漏電流密度、孔隙度、表面型態、硬度、彈性模數)。使用親水性低的奈米顆粒或界面活性劑製備薄膜,可提升薄膜的孔隙度。此外,親水性低的奈米顆粒表面含較少的氫氧基,有利於製備介電常數低的薄膜。然而,當奈米顆粒表面的親水性太低,使界面活性劑形成大的聚集物,進而造成煅燒後的鍍膜表面有大孔洞。薄膜表面的大洞,使薄膜有較高的漏電流密度與較高的介電常數。薄膜的機械強度(硬度與彈性模數),隨著奈米顆粒的表面氫氧基減少而下降。此外,機械強度較低的薄膜,其表面出現奈米尺度的裂縫。另一方面,親水性較高的界面活性劑對於奈米顆粒有較強的作用力,使製備後的薄膜於六甲二矽氮烷(HMDS)表面修飾步驟後殘留較少的氫氧基團,進而降低薄膜介電常數、降低薄膜漏電流密度、與提高薄膜崩潰電場。 MFI-like非結晶型氧化矽(NCS)奈米顆粒可經由短時間水熱程序製備而得。由於非結晶型氧化矽顆粒的粒徑約5奈米,本研究嘗試利用此奈米顆粒於鋁基材上製備緻密的氧化矽薄膜,應用於金屬防蝕塗佈。然而,隨著製備的薄膜厚度增加,薄膜表面產生裂縫;產生裂縫主要是因為氧化矽顆粒與鋁金屬間的熱膨脹係數差異所造成。為了製備較厚且表面沒有裂縫的抗腐蝕薄膜,利用有機矽烷化物與非結晶型氧化矽奈米顆粒製備有機-無機混成薄膜。由研究結果發現,添加此奈米顆粒,可提升薄膜的抗腐蝕能力。塗佈後的有機-無機混成薄膜,膜厚約4 μm且具備高的抗腐蝕性;且此薄膜具備3H的鉛筆硬度(此表面硬度與市售塗佈商品-南美特R 5200-具備相同的機械強度)。 | zh_TW |
dc.description.abstract | Pure-silica-zeolite (PSZ) Mobil-Five (MFI) and MFI-like noncrystalline silica (NCS) nanoparticles synthesized using tetrapropylammonium hydroxide (TPAOH) as a structure directing agent were produced via hydrothermal processes, and those nanoparticles were applied to fabricate porous silica low dielectric constant (low-k) films and anti-corrosion films in this dissertation.
When hydrothermally producing the PSZ MFI nanoparticle suspensions, effect of wall thickness of autoclave reactor is studied. Heat transfer simulation indicates that decreasing the wall thickness increases temperature rising rate in the reactor at initial stage of hydrothermal synthesis. An increased initial temperature rising rate produces the suspensions with large particle size. That is, initial temperature rising rate in the reactor affects significantly on sizes of the PSZ MFI nanoparticles at the final stage of hydrothermal synthesis. Porous silica low-k films are prepared from coating solutions containing the nanoparticles and surfactants. Effects of TPAOH concentration, hydrophobic tail length of polysorbate surfactants, and hydrothermal time on coating solutions to produce low-k films are studied. Because increasing the TPAOH concentration or decreasing the hydrothermal time increases the number of silanol groups (or hydrophilic property) on the particles and because increasing the tail length decreases hydrophilic property of the surfactants, coated films from coating solutions containing these particles and surfactants with various hydrophilic properties are substantially different. Thus, their effects on low-k film properties (i.e., k value, leakage current density, porosity, surface morphology, hardness, and elastic modulus) are investigated. Using nanoparticles or surfactants with a low hydrophilic property produces films with high porosity. Additionally, particles with few silanol groups are preferable to prepare films with ultra-low-k values. However, when the hydrophilic property of particles is too low, large micelle aggregates that form in coating solutions result in large holes on film surfaces after the calcination. These large holes can cause extremely high leakage current densities and high k values >2. Further, mechanical strength of films decreases as the number of silanol groups on particles decreases. Additionally, surfaces of the resulting films with poor mechanical strength have some nano-sized cracks. Conversely, increasing hydrophilicity of surfactants increases their interaction with silica particles, resulting in a decreased number of remaining silanol groups in films after hexamethyldisilazane (HMDS) surface treatment. The small number of remaining of silanol groups can cause films to have low k values, low leakage current densities, and high breakdown fields. When using a short hydrothermal time to synthesize the nanoparticle suspensions, only MFI-like NCS nanoparticle suspensions are produced. The MFI-like NCS particles with small size of about 5 nm are attempted to prepare dense silica coatings for protection of aluminum from corrosion. However, as coating thickness increases, the number and size of cracks increase. Cracks on films are a result of thermal expansion mismatch between silica particles and aluminum substrate. To produce thick and crack-free films as anti-corrosion coatings, MFI-like NCS suspensions were mixed with an organosilane solution to develop hybrid coating solutions. Anti-corrosion ability increases as the suspension loading increases. Hybrid films with smooth surface and thickness of about 4 μm have good anti-corrosion ability. Additionally, the films have pencil hardness of 3H, which is comparable with that of a commercial product of NanoMateR 5200. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:41:23Z (GMT). No. of bitstreams: 1 ntu-103-F98524036-1.pdf: 7714935 bytes, checksum: 328a1b39028ea165d2fae19371ee37fd (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書.................................Ⅰ
誌謝..........................................II Abstract…………………………………………………………………………………III Chinese abstract…………………………………………………………………………V Contents………………………………………………………………………………...VI List of Tables……………………………………………………………………………X List of Figures…………………………………………………………………………XII Chapter 1 Introduction 1 1-1 Background 1 1-2 Introduction of zeolite structure and zeolite synthesis 4 1-3 Introduction of zeolite thin films application 7 1-3.1 Semiconductor industry: low-k films 7 1-3.2 Anti-corrosion films 9 1-3.3 Other applications 10 1-3.3.1 Anti-reflective films 10 1-3.3.2 Catalytic films 11 1-3.3.3 Zeolite-based films for separations and sensors 12 1-4 Review of zeolite thin films as low-k films and anti-corrosion films 14 1-4.1 Zeolite thin films as low-k films 14 1-4.2 MFI-like Noncrystalline silica (NCS) nanoparticles 18 1-4.3 MFI-like noncrystalline silica (NCS) to produce low-k films 20 1-4.4 Zeolite thin films as anti-corrosion films 21 1-5 Motivations, Objectives and Scope of Dissertation 26 Chapter 2 Principle and Experimental section 29 2-1 Chemicals 29 2-2 Apparatuses 30 2-3 General process for preparation of low-k films 32 2-3.1 Cleaning substrates 32 2-3.2 Preparation of PSZ MFI suspensions 32 2-3.3 Introduction of nonionic surfactants 35 2-3.4 Preparation of coating solutions and low-k films 36 2-3.5 Preparation of anti-corrosion films 38 2-4 Characterization 41 2-4.1 X-Ray Diffraction (XRD) characterization 41 2-4.2 Nitrogen adsorption/desorption measurement 41 2-4.3 Solid State 29Si MAR NMR characterization 42 2-4.4 Particle size measurement 42 2-4.5 Inductively Coupled Plasma Optical Emission Spectrometry (ICP) characterization 43 2-4.6 Atomic Force Microscopy (AFM) measurement 43 2-4.7 Transmission-FTIR measurement 43 2-4.8 Electrical properties measurements 44 2-4.8.1 Dielectric constant measurement 44 2-4.8.2 Leakage current density measurement 45 2-4.8.2.1 Schottky emission leakage mechanism 46 2-4.9 Field Emission Scanning Electron Microscopy (FE-SEM) measurement 46 2-4.10 Nanoindentation measurement 47 2-4.11 Pencil hardness measurement 47 2-4.12 Electrochemical measurement of corrosion 47 Chapter 3 Effect of Autoclave Wall-thickness on Hydrothermal Synthesis of MFI Silica Nanoparticles 49 3-1 Introduction 49 3-2 Experimental section 50 3-3 Results and discussion 52 3-4 Conclusions 62 Chapter 4 Effect of Concentration of Tetrapropylammonium Hydroxide on Silica Suspensions for Making Spin-On Porous Low-k Films 63 4-1 Introduction 63 4-2 Experimental section 65 4-3 Characterization of silica nanoparticles 66 4-4 Transmission-FTIR measurements of film samples 68 4-5 Effect of the TPAOH/TEOS molar ratio on pore properties 71 4-6 Effect of the TPAOH/TEOS molar ratio on film morphology 74 4-7 Effect of the TPAOH/TEOS molar ratio on electrical properties 81 4-8 Effect of the TPAOH/TEOS molar ratio on film mechanical properties 85 4-9 Conclusions 87 Chapter 5 Porous Ultra-Low-k Films from Noncrystalline Silica Coating Solution with Polysorbate Surfactants of Different Hydrophobic Tail Length 89 5-1 Introduction 89 5-2 Experimental section 91 5-3 Effects of surfactant tail length on pore properties 93 5-4 Surface morphology and mechanical strength 96 5-5 Effects of surfactant tail length on film electrical properties 97 5-6 Characterization of film samples and dried powder samples without HMDS modification 107 5-7 Thermal analyzes of dried powder samples without HMDS modification 112 5-8 The correlation between surfactant/silica interaction and film electrical properties 116 5-9 Conclusions 119 Chapter 6 Effect of Hydrothermal Time on Properties of Porous Silica Ultra-Low-k Films Using Polysorbate Surfactants with Different Tail Lengths 121 6-1 Introduction 121 6-2 Experimental section 123 6-3 Results 125 6-3.1 Particle size and particle crystallinity characterization 125 6-3.2 Solid-state 29Si MAS NMR measurement 126 6-3.3 Nitrogen adsorption/desorption measurement 128 6-3.4 Transmission-FTIR measurement 130 6-3.5 Thermal analysis measurement 132 6-3.6 Atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements 135 6-3.7 Electrical properties measurement 137 6-3.8 Mechanical properties measurement 142 6-4 Discussion 143 6-5 Conclusions 150 Chapter 7 Application as Anti-Corrosion Films 152 7-1 General introduction 152 7-2 Development of anti-corrosion films from MFI silica suspensions 155 7-2.1 Introduction 155 7-2.2 Experimental section 160 7-2.2.1 Cleaning substrates 160 7-2.2.2 Preparation of coating solution and anti-corrosion films 160 7-2.2.2.1 Inorganic silica coatings 160 7-2.2.2.2 Inorganic-organic hybrid coatings 161 7-2.2.3 Characterization 162 7-2.3 Establishing electrochemical techniques for corrosion test 164 7-2.4 Preparation of inorganic silica films 166 7-2.4.1 Film thickness analysis 166 7-2.4.2 Electrochemical analysis 168 7-2.4.3 Surface morphology 171 7-2.4.4 Mechanical properties 175 7-2.4.5 Comparison with literature data 175 7-2.4.6 Conclusions 178 7-2.5 Preparation of inorganic-organic hybrid films 180 7-2.5.1 Hybrid films from precursor solution 181 7-2.5.2 Zeolite-doped hybrid films 184 7-2.5.3 Conclusions 194 Chapter 8 Suggestions and Future Studies 196 8-1 Hydrothermal synthesis of PSZ MFI suspensions 196 8-2 Low-k materials 199 8-3 Anti-corrosion materials 200 References 203 | |
dc.language.iso | zh-TW | |
dc.title | 以純氧化矽沸石奈米顆粒製備低介電膜及抗腐蝕膜之研究 | zh_TW |
dc.title | Study of Low-k Films and Anti-Corrosion Films Prepared from Pure-Silica-Zeolite Nanoparticles | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顏溪成(Shi-Chern Yen),王大銘(Da-Ming Wang),康敦彥(Dun-Yen Kang),吳文發(Wen-Fa Wu),劉博滔(Bo-Tau Liu) | |
dc.subject.keyword | 孔洞型二氧化矽薄膜,低介電薄膜,低介電常數,MFI沸石,MFI-like非結晶氧化矽,四丙基氫氧化銨,水熱程序,抗腐蝕薄膜,有機-無機混成薄膜, | zh_TW |
dc.subject.keyword | Porous silica films,Low-k films,Low dielectric constant,MFI zeolite,MFI-like noncrtstalline silica,Tetrapropylammonium hydroxide (TPAOH),Hydrothermal process,Anti-corrosion films,Inorganic-organic hybrid films, | en |
dc.relation.page | 212 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 7.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。