Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范光照(Kuang-Chao Fan)
dc.contributor.authorHung-Yu Wangen
dc.contributor.author王宏瑜zh_TW
dc.date.accessioned2021-06-16T06:41:15Z-
dc.date.available2019-08-16
dc.date.copyright2014-08-16
dc.date.issued2014
dc.date.submitted2014-07-29
dc.identifier.citation1. McKewon. Nanotchnology. 1998.
2. Chang, S.H., C.K. Tseng, and H.C. Chien, An ultra-precision XYθZ piezo-micropositioner part II: Experiment and performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999. 46(4): p. 906-912.
3. Yao, Q., J. Dong, and P.M. Ferreira, A novel parallel-kinematics mechanisms for integrated, multi-axis nanopositioning. Part 1. Kinematics and design for fabrication. Precision Engineering, 2008. 32(1): p. 7-19.
4. Kim, W.j., S. Verma, and H. Shakir, Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precision Engineering, 2007. 31(4): p. 337-350.
5. Jywe, W., C.H. Liu, and Y.F. Teng, Development of a flexure hinge-based stack-type five-degrees-of-freedom nanometre-scale stage for a heavy-loading machining process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2007. 221(3): p. 379-385.
6. Jager, G. Precision distance measurement by means of miniaturized interferometers. in Proceedings of the XIIIth IMEKO World Congress. 1994.
7. 范光照, et al., 高精密機械定位平台之研製. 2000.
8. Okazaki, Y., S. Asano, and T. Goto, Dual-servo mechanical stage for continuous positioning. International Journal of the Japan Society for Precision Engineering, 1993. 27(2): p. 172-173.
9. Awabdy, B.A., W.C. Shih, and D.M. Auslander, Nanometer positioning of a linear motion stage under static loads. IEEE/ASME Transactions on Mechatronics, 1998. 3(2): p. 113-119.
10. Liu, Y.T., R.F. Fung, and C.C. Wang, Precision position control using combined piezo-VCM actuators. Precision Engineering, 2005. 29(4): p. 411-422.
11. Jaeger, G., et al. Nanopositioning and measuring technique. in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life. 2002. International Society for Optics and Photonics.
12. 井澤實, 精密定位技術及其設計技術. 1992, 建宏出版社.
13. 朱志良, 范光照, and 簡揚昌, 壓電長行程定位平台驅動控制器之研製. 2003.
14. Scire, F.E. and E.C. Teague, Piezodriven 50-μm range stage with subnanometer resolution. Review of Scientific Instruments, 1978. 49(12): p. 1735-1740.
15. Matey, J.R., et al., Bimorph-driven x-y-z translation stage for scanned image microscopy. Review of Scientific Instruments, 1987. 58(4): p. 567-570.
16. Furukawa, E., M. Mizuno, and T. Hojo, A twin-type piezo-driven translation mechanism. International journal of the Japan Society for Precision Engineering, 1994. 28(1): p. 70-75.
17. Furukawa, E., M. Mizuno, and T. Doi, Development of a flexure-hinged translation mechanism driven by two piezoelectric stacks. JSME international journal. Ser. C, Dynamics, control, robotics, design and manufacturing, 1995. 38(4): p. 743-748.
18. Heil, J., et al., Versatile three‐dimensional cryogenic micropositioning device. Review of scientific instruments, 1996. 67(1): p. 307-311.
19. 簡宏彰, 三自由度超精密微定位平台之研究. 1996, 國立台灣大學.
20. Oiwa, T. and T. Sugimoto, Shape optimization for flexure hinges. JOURNAL-JAPAN SOCIETY FOR PRECISION ENGINEERING, 1997. 63: p. 1454-1458.
21. 曾俊凱, 三自由度微定位平台之動態分析. 1997, 國立台灣大學.
22. Chang, S. and B. Du, A precision piezodriven micropositioner mechanism with large travel range. Review of Scientific Instruments, 1998. 69(4): p. 1785-1791.
23. Chang, S. and S. Li, A high resolution long travel friction-drive micropositioner with programmable step size. Review of Scientific Instruments, 1999. 70(6): p. 2776-2782.
24. Gonda, S., T. Kurosawa, and Y. Tanimura, Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology. Measurement Science and Technology, 1999. 10(11): p. 986.
25. 朱怡銘, 奈米級 XYZ 三自由度微定位平台之設計製造與分析. 2000, 國立台灣大學.
26. 劉保國, 應用電腦輔助分析於設計壓電致動撓性鉸鏈平台之精準位移. 2000, 國立彰化師範大學.
27. 謝士渠, 壓電致動器運用在XYθz 精密定位平台之設計與實驗. 2000, 國立彰化師範大學.
28. 蔡奇陵, 六自由度超精密奈米定位平台研製. 2001, 國立台灣大學.
29. 吳冬立, 並聯式六自由度奈米級微定位平台研製. 2001, 國立台灣大學.
30. 陳家豪, 奈米級精密定位平台之最佳位移解析度及軌跡圓之分析與量測. 2002, 國立台灣大學.
31. Furutani, K., N. Ohta, and K. Kawagoe, Coarse and fine positioning performance of an L-shaped seal mechanism with three degrees of freedom. Measurement Science and Technology, 2004. 15(1): p. 103.
32. Furutani, K., M. Furuichi, and N. Mohri, Coarse motion ofseal mechanism'with three degrees of freedom by using difference of frictional force. Measurement Science and Technology, 2001. 12(12): p. 2147.
33. Mamin, H.J., et al., Two‐dimensional, remote micropositioner for a scanning tunneling microscope. Review of scientific instruments, 1985. 56(11): p. 2168-2170.
34. Dudnikov, V., D. Kovalevsky, and A. Shabalin, Simple, high precision linear‐motor‐driven XYΘ positioner (Walker). Review of scientific instruments, 1991. 62(10): p. 2492-2492.
35. De Haas, E., W. Barsingerhorn, and J. Van der Veen, Piezoelectrically driven rotary stage for use in ultrahigh vacuum. Review of scientific instruments, 1996. 67(5): p. 1930-1934.
36. Shang, G., et al., Piezoelectric push–pull micropositioner for ballistic electron emission microscope. Review of scientific instruments, 1997. 68(10): p. 3803-3805.
37. Pond, K., et al., A two-dimensional ultrahigh vacuum positioner for scanning tunneling microscopy. Review of scientific instruments, 1998. 69(3): p. 1403-1405.
38. Gao, P., H. Tan, and Z. Yuan, The design and characterization of a piezo-driven ultra-precision stepping positioner. Measurement Science and Technology, 2000. 11(2): p. N15.
39. Cusin, P., T. Sawai, and S. Konishi, Compact and precise positioner based on the inchworm principle. Journal of micromechanics and microengineering, 2000. 10(4): p. 516.
40. Pohl, D.W., Dynamic piezoelectric translation devices. Review of Scientific Instruments, 1987. 58(1): p. 54-57.
41. Renner, C., P. Niedermann, and A. Kent, A vertical piezoelectric inertial slider. Review of scientific instruments, 1990. 61(3): p. 965-967.
42. Curtis, R., et al., A compact micropositioner for use in ultrahigh vacuum. Review of scientific instruments, 1993. 64(9): p. 2687-2690.
43. Smith, A., S. Gwo, and C. Shih, A new high‐resolution two‐dimensional micropositioning device for scanning probe microscopy applications. Review of scientific instruments, 1994. 65(10): p. 3216-3219.
44. Luecke, F.S. and A. Tuganov, Piezoelectric actuator for optical alignment screws. 1995, Google Patents.
45. 童昌賢, 高精度共平面平台之研製. 2004, 國立台灣大學.
46. 吳佩璁, 精密零阿貝誤差之三軸移動台的製作研究. 2007, 國立台灣大學.
47. Lin, F.-J., Fuzzy adaptive model-following position control for ultrasonic motor. Power Electronics, IEEE Transactions on, 1997. 12(2): p. 261-268.
48. 劉允升, 線性陶瓷馬達系統之模型化. 1998, 中華大學.
49. 許安仁, 自調式類神經 PID 控制於超音波馬達之應用. 2000, 中央大學.
50. 曾喜君, 壓電陶瓷馬達驅動控制之設計與分析, in 私立中原大學, 機械工程學系, 碩士論文. 2000, 私立中原大學.
51. Lee, C.-H. and C.-C. Teng, Identification and control of dynamic systems using recurrent fuzzy neural networks. Fuzzy Systems, IEEE Transactions on, 2000. 8(4): p. 349-366.
52. Shyu, K.-K. and C.-Y. Chang. Antiwindup controller design for piezoelectric ceramic linear ultrasonic motor drive#. in Industrial Electronics Society, 2003. IECON'03. The 29th Annual Conference of the IEEE. 2003. IEEE.
53. Yamaguchi, T., et al., Wear mode control of drive tip of ultrasonic motor for precision positioning. Wear, 2004. 256(1): p. 145-152.
54. Mainali, K., et al. Position tracking performance enhancement of linear ultrasonic motor using iterative learning control. in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. 2004. IEEE.
55. Zhao, X., W. Chen, and S. Shi. Ultrasonic motor's velocity control based on the BP fuzzy neural network with stored information. in Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International Symposium on. 2006. IEEE.
56. Fan, K.-C. and Z.-F. Lai, An intelligent nano-positioning control system driven by an ultrasonic motor. International J. of Precision Engineering and Manufacturing, 2008. 9(3): p. 40-45.
57. Cheng, F., et al., A BPNN-PID based long-stroke nanopositioning control scheme driven by ultrasonic motor. Precision engineering, 2012. 36(3): p. 485-493.
58. Wang, H.-Y., et al., A Long-Stroke Nanopositioning Control System of the Coplanar Stage. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014. 19(1): p. 348-356.
59. Gould, R.G. The LASER, light amplification by stimulated emission of radiation. in The Ann Arbor conference on optical pumping, the University of Michigan. 1959.
60. Michelson, A.A. and E.W. Morley, On the relative motion of the earth and the luminiferous ether. American journal of science, 1887(203): p. 333-345.
61. Liu, X., et al., Polarization interferometer for measuring small displacement. Instrumentation and Measurement, IEEE Transactions on, 2001. 50(4): p. 868-871.
62. Pisani, M., A homodyne Michelson interferometer with sub-picometer resolution. Measurement Science and Technology, 2009. 20(8): p. 084008.
63. Požar, T., P. Gregorčič, and J. Možina, A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer. Applied Physics B, 2011. 105(3): p. 575-582.
64. Schott, W., Developments in homodyne interferometry. Key Engineering Materials, 2010. 437: p. 84-88.
65. Wu, G., 繞射式雷射光學尺系統之研製. 2001, National Taiwan University.
66. 政晟, 自校準繞射式雷射光學尺之設計與實驗. 2002, National Taiwan University.
67. Ishizuka, K. and T. Nishimura, Encoder with high resolving power and accuracy. 1992, Google Patents.
68. Kao, C.-F., et al., Diffractive laser encoder with a grating in Littrow configuration. Japanese Journal of Applied Physics, 2008. 47(3R): p. 1833.
69. Cheng, F. and K.-C. Fan, Linear diffraction grating interferometer with high alignment tolerance and high accuracy. Applied optics, 2011. 50(22): p. 4550-4556.
70. Chung, Y.-C., K.-C. Fan, and B.-C. Lee. Development of a novel planar encoder for 2D displacement measurement in nanometer resolution and accuracy. in Intelligent Control and Automation (WCICA), 2011 9th World Congress on. 2011. IEEE.
71. Wang, X., et al., Two-dimensional displacement sensing using a cross diffraction grating scheme. Journal of Optics A: Pure and Applied Optics, 2004. 6(1): p. 106.
72. Kao, C.-F., S.-H. Lu, and M.-H. Lu, High resolution planar encoder by retro-reflection. Review of scientific instruments, 2005. 76(8): p. 085110.
73. Kao, C.-F., C.C. Chang, and M.-H. Lu, Double-diffraction planar encoder by conjugate optics. Optical Engineering, 2005. 44(2): p. 023603-023603-7.
74. Agilent, A., Version 2008. Agilent Technologies, 2008. 1400: p. 95403-1799.
75. Zeeman, P., The effect of magnetisation on the nature of light emitted by a substance. Nature, 1897. 55(1424): p. 347.
76. Menq, C.-H., J.-H. Zhang, and J. Shi, Design and development of an interferometer with improved angular tolerance and its application to x–y theta measurement. Review of Scientific Instruments, 2000. 71(12): p. 4633-4638.
77. 鄭德鋒,王向朝,李中梁,唐鋒,步揚, 一種使用雙稜鏡的動態小角度測量方法. 中國激光, 2007. 34(9).
78. Lee, J.-Y., et al., Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution. Sensors and Actuators A: Physical, 2007. 137(1): p. 185-191.
79. Hsieh, H., et al., Quasi-common-optical-path heterodyne grating interferometer for displacement measurement. Measurement science and technology, 2010. 21(11): p. 115304.
80. Wu, C.-C., et al., Optical heterodyne laser encoder with sub-nanometer resolution. Measurement Science and Technology, 2008. 19(4): p. 045305.
81. Hahn, I., et al., A heterodyne interferometer for angle metrology. Review of Scientific Instruments, 2010. 81(4): p. 045103.
82. SHimizu, S. and H.-S. Lee, Simultaneous Measuring Method of Table Motion Errors in 6 Degrees of Freedom. Int. J. Japan Soc. Prec. Eng., 1994. 28(3): p. 273-274.
83. Fan, K.C., M.J. Chen, and W.M. Huang, A six-degree-of-freedom measurement system for the motion accuracy of linear stages. International Journal of Machine Tools and Manufacture, 1998. 38(3): p. 155-164.
84. Fan, K.-C. and M.-J. Chen, A 6-degree-of-freedom measurement system for the accuracy of XY stages. Precision Engineering, 2000. 24(1): p. 15-23.
85. Gao, W., et al., A surface motor-driven planar motion stage integrated with an XYθZ surface encoder for precision positioning. Precision Engineering, 2004. 28(3): p. 329-337.
86. Gao, W. and A. Kimura, A three-axis displacement sensor with nanometric resolution. CIRP Annals-Manufacturing Technology, 2007. 56(1): p. 529-532.
87. Liu, C.-H., et al., Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage. Review of scientific instruments, 2005. 76(5): p. 055110.
88. Kimura, A., et al., Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness. Precision Engineering, 2010. 34(1): p. 145-155.
89. Lee, J.-Y. and M.-P. Lu, Optical heterodyne grating shearing interferometry for long-range positioning applications. Optics Communications, 2011. 284(3): p. 857-862.
90. Lee, C., G.H. Kim, and S.-K. Lee, Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage. Measurement Science and Technology, 2011. 22(10): p. 105901.
91. Balzer, F.G., et al., Tactile 3D microprobe system with exchangeable styli. Measurement Science and Technology, 2011. 22(9): p. 094018.
92. Gao, Z., et al., A new 6-degree-of-freedom measurement method of X-Y stages based on additional information. Precision Engineering, 2013. 37(3): p. 606-620.
93. Di Giacomo, B., et al., CMM POSITIONING ERRORS CALIBRATION AND THE UNCERTAINTIES MEASUREMENT USING A HOLE BAR AND REVERSAL TECHNIQUE.
94. Forbes, A. and I. Smith, Self-Calibration and Error Separation in Metrology. SERIES ON ADVANCES IN MATHEMATICS FOR APPLIED SCIENCES, 2001. 57: p. 148-162.
95. Ouyang, J. and I. Jawahir, Ball array calibration on a coordinate measuring machine using a gage block. Measurement, 1995. 16(4): p. 219-229.
96. Kruth, J.-P., P. Vanherck, and L. De Jonge, Self-calibration method and software error correction for three-dimensional coordinate measuring machines using artefact measurements. Measurement, 1994. 14(2): p. 157-167.
97. Belforte, G., et al., Coordinate measuring machines and machine tools selfcalibration and error correction. CIRP Annals-Manufacturing Technology, 1987. 36(1): p. 359-364.
98. Evans, C.J., R.J. Hocken, and W.T. Estler, Self-calibration: reversal, redundancy, error separation, and ‘absolute testing’. CIRP Annals-Manufacturing Technology, 1996. 45(2): p. 617-634.
99. Coorevits, T., J. David, and P. Bourdet, Elimination of geometrical errors by permutations–Application to a rotary table. CIRP Annals-Manufacturing Technology, 1991. 40(1): p. 531-534.
100. Schulz, G. and J. Grzanna, Absolute flatness testing by the rotation method with optimal measuring-error compensation. Applied optics, 1992. 31(19): p. 3767-3780.
101. Tyler Estler, W., C.J. Evans, and L. Shao, Uncertainty estimation for multiposition form error metrology. Precision Engineering, 1997. 21(2): p. 72-82.
102. Hansen, H. and L. De Chiffre, A combined optical and mechanical reference artefact for coordinate measuring machines. CIRP Annals-Manufacturing Technology, 1997. 46(1): p. 467-470.
103. Lim, J., K. Nam, and M. Chung, A two-dimensional test body for calibration of coordinate measuring machines. Precision engineering, 1988. 10(3): p. 153-156.
104. Zhang, G. and Y. Zang, A method for machine geometry calibration using 1-D ball array. CIRP Annals-Manufacturing Technology, 1991. 40(1): p. 519-522.
105. Kunzmann, H., E. Trapet, and F. Waldele, A uniform concept for calibration, acceptance test, and periodic inspection of coordinate measuring machines using reference objects. CIRP Annals-Manufacturing Technology, 1990. 39(1): p. 561-564.
106. Trapet, E. and F. Waldele, A reference object based method to determine the parametric error components of coordinate measuring machines and machine tools. Measurement, 1991. 9(1): p. 17-22.
107. Marinello, F., et al., Calibration artefact for the microscale with high aspect ratio: The fiber gauge. CIRP Annals-Manufacturing Technology, 2008. 57(1): p. 497-500.
108. Takac, M.T. Self-calibration in one dimension. in 13th Annual BACUS Symposium on Photomask Technology and Management. 1994. International Society for Optics and Photonics.
109. Zhang, G., et al., Error compensation of coordinate measuring machines. CIRP Annals-Manufacturing Technology, 1985. 34(1): p. 445-448.
110. 范光照, 張., 精密量測. 2003: 高立圖書有限公司.
111. Schellekens, P., et al., Design for precision: current status and trends. CIRP Annals-Manufacturing Technology, 1998. 47(2): p. 557-586.
112. Bryan, J.B., The Abbe principle revisited: an updated interpretation. Precision Engineering, 1979. 1(3): p. 129-132.
113. Hale, L.C., Principles and techniques for designing precision machines. 1999, Lawrence Livermore National Lab., CA (US).
114. Bryan, J. and D. Carter, Design of a new error-corrected co-ordinate measuring machine. Precision Engineering, 1979. 1(3): p. 125-128.
115. Zhang, G., A study on the Abbe principle and Abbe error. CIRP Annals-Manufacturing Technology, 1989. 38(1): p. 525-528.
116. 柯志遠, 高精度奈米級微型三軸移動台結構之設計與組裝方法. 2010, 臺灣大學.
117. 林仲豪, 微型三次元量測儀之結構改良與自校正方法之研究. 2012, 臺灣大學.
118. Sigeru Omatu and M. Yoshioka, Self-tuning neuron-PID control and applications. 1997.
119. Rumelhart, D.E., G.E. Hinton, and R. Williams, Learning internal representation by error propagation. Vol. 1. 1986: Parallel Distributed Processing.
120. 葉怡成, 類神經網路模式應用與實作. 1995: 儒林.
121. Funahashi.K, On the Approximate Realization of Continuous Mappingsby Neural Networks. 1989.
122. Franco, S., Design with operational amplifiers and analog integrated circuits. McGrawHill, 2002.
123. Nanomotion AB2 Driver User Manual.
124. Loewen, E., Diffraction Grating Handbook. 2005.
125. Heydemann, P.L., Determination and correction of quadrature fringe measurement errors in interferometers. Applied optics, 1981. 20(19): p. 3382-3384.
126. Tsai, M.-F. and C.-P. Chen. Design of a quadrature decoder/counter interface IC for motor control using CPLD. in IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the]. 2002. IEEE.
127. Fan, K.-C., C.-L. Chu, and J.-I. Mou, Development of a low-cost autofocusing probe for profile measurement. Measurement science and technology, 2001. 12(12): p. 2137.
128. 廖柏勛, 具即時波長補償與雙角度量測麥克森干涉儀之研製. 2012, 臺灣大學.
129. 鍾一正, 微型可重構式超精密光學干涉儀之研製. 2011, 台灣大學.
130. Matlab. fmincon,http://www.mathworks.com/help/optim/ug/fmincon.html.
131. Ekinci, T. and J. Mayer, Relationships between straightness and angular kinematic errors in machines. International Journal of Machine Tools and Manufacture, 2007. 47(12): p. 1997-2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57311-
dc.description.abstract隨著科技業不斷進步,產品持續朝微小化發展,因此具微奈米高精度平台需求被視為當下重要議題。本論文針對奈米級共平面平台提出一系列關鍵技術其中包含:零阿貝共平面平台設計,強健控制系統,高解析度感測器,即時訊號校正與細分,定位誤差校正與誤差補償系統建置。
為了兼顧效率和驅動解析度,同時考慮結構精簡化要求,本研究採用一種基於壓電陶瓷元件的超音波馬達HR4(Nanomotion Co.)作為驅動器。該馬達提供交流、脈衝與直流三種驅動模式,分別提供毫米、微米、奈米級長度驅動。為補償平台運動中時變的磨擦力,控制系統根據感測器迴授訊號,以自調式類神經即時調整PID控制器參數,並利用大小行程驅動與各種軌跡控制來驗證系統定位精度。
第三代共平面平台利用具奈米精度之線性繞射光柵干涉儀做為各軸位移量的感測器。為達到高精度定位控制,以誤差補償表為策略來消除平台中系統性誤差。此誤差補償表之建立乃利用雷射干涉儀進行定位誤差校正,並搭配四象限感測器校正光軸以確保無餘弦誤差。實驗結果證實,補償後全行程20 mm內定位誤差可達到±20 nm,標準差為12 nm。
改良式共平面平台是由多自由度量測系統來進行X與Y軸位移量測,該量測系統由波長補償麥克森干涉儀、雙軸自動視準儀與波長補償模組所組合而成,為了符合奈米級量測精度,發展一套麥克森干涉儀的反射鏡直線度對位方式,並針對即時波長補償建立一套數學模式,經實驗驗證其多自由度系統的波長穩定度可達 。更重要的,多自由度系統不僅在X與Y軸向具備奈米級量測精度,也可同時量測移動軸向的俯仰角和偏擺角,所以Z軸上阿貝誤差也因此得以補償。另外自動視準儀在定距離±30 arc sec量測時,精度為±0.3 arc sec。
由於幾何誤差對於高精度奈米共平面平台影響甚劇,因此在改良式共平面平台上,定位誤差、直線度誤差、垂直度誤差與角度誤差皆可由多自由度量測系統量測得出,另外平面鏡形貌也利用兩組多自由度系統分離出,因此該體積誤差可被自動補償。最後,結果驗證此共平面平台可達到奈米級精度與解析度並且適合應用於如微奈米三次元量測儀,微型曝光機與微機械加工之應用。
zh_TW
dc.description.abstractWith the continuing trend toward device miniaturization in many engineering and scientific fields, the need to accomplish highly-precise stage at the micro- or nanoscale has emerged as a critical concern. This research presents a series of key technologies with nanometer level co-planar X-Y stages including Abbe free co-planar stage development, robust motion control scheme, high-resolution sensor, real-time signal correction and subdivision, positioning error calibration and error compensation system established.
For the driving resolution and efficiency, as well as the simplification requirement, a piezoelement-based ultrasonic motor HR4 (Nanomotion Co.) is employed in this study. The motor drive provides three main driving modes, namely AC, Gate and DC, for millimeter, micrometer and nanometer displacements, respectively. To compensate for the effects of the variable friction force during stage motion, the gains of the PID controller used to regulate the stage motion are tuned adaptively by a self-tuning neuro-PID based on the feedback signals. The positioning accuracy of the proposed system is evaluated by performing large and small stroke and a series of contouring experiments.
The 3rd generation of co-planar stage, the displacement of each axis stage is sensed using a linear diffraction grating interferometer (LDGI) with a nanometer resolution. Furthermore, to obtain a high accuracy positional motion, the error compensation strategy is implemented to eliminate the systematic errors of the stage with error budget. The error budget is obtained by positioning error calibration using a laser interferometer, which optical axis is detected by a quadrant photodetector (QPD) to ensure no cosine error. The positioning error can be controlled to ±20 nm with standard deviation 12 nm after implementing error compensation.
In the modified co-planar stage, the x- and y-axis coordinates are measured using the MDFMS which comprising a wavelength-corrected Michelson interferometer, a dual-axis autocollimator and wavelength compensator. In order to meet the requirement for a nanometer level measurement, the method for straightness of mirror in Michelson interferometer and alignment procedures have been developed. Moreover, a mathematical model for real time wavelength correction has been proposed and experimental results show that the MDFMS has a normalized wavelength stability of less than 10-6. Importantly, the MDFMS not only enables the x- and y-axis coordinates to be measured with a nanoscale precision, but also enables the pitch and yaw errors of each axis to be detected such that the Abbe errors in the z-direction can be compensated. Moreover, the autocollimator has an accuracy of ± 0.3 arc-sec over the range of ± 30 arc-sec.
Besides, the performance of a high-precision co-planar stage is extremely sensitive to the effects of volumetric accuracy. In the modified co-planar stage, this 6-DOF capability can measure the positioning error, straightness error, squareness error and angular errors of the X and Y motions. In addition, the shape error of the mirror can also be separated by using two MDFMS. The volumetric error compensation can also be done automatically. The results demonstrate that the co-planar stage achieves a nanometer level of accuracy and resolution and is therefore a suitable solution for micro-CMM, micro-lithography and micro-machining applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:41:15Z (GMT). No. of bitstreams: 1
ntu-103-D96522010-1.pdf: 12486118 bytes, checksum: 1b4031f8cd98c764f931ac762ca733d2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 ii
摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xviii
Chapter1 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 高精度移動台之研究進展 3
1.2.2 超音波馬達控制之研究進展 10
1.2.3 干涉儀之研究進展 12
1.2.4 多自由度量測系統之研究進展 19
1.2.5 自校正之研究進展 27
1.3 研究內容概要 31
Chapter2 共平面平台之整體架構 32
2.1 系統架構與設計原理 32
2.1.1 Abbe原則 32
2.1.2 共平面平台設計 35
2.2 奈米級共平面移動台之關鍵技術 37
2.3 本章小結 38
Chapter3 共平面平台運動控制之研究 39
3.1 運動控制系統架構 39
3.2 超音波馬達與驅動器AB2 driver介紹 40
3.2.1 超音波馬達 40
3.2.2 Nanomotion HR4原理 42
3.2.3 超音波馬達驅動器AB2 Driver 44
3.3 自調式類神經PID控制理論 46
3.3.1 PID控制器 46
3.3.2 類神經網路理論 48
3.3.3 自調式類神經PID控制 54
3.4 共平面平台之運動控制 56
3.4.1 基於不同驅動模式之實驗 56
3.4.2 軌跡控制 61
3.5 本章小結 64
Chapter4 奈米運動控制系統之線性繞射光柵干涉儀 65
4.1 線性繞射光柵干涉儀之介紹 65
4.1.1 光柵干涉測量原理 66
4.1.2 多工式干涉模組 69
4.1.3 LDGI結構設計 71
4.2 訊號處理 72
4.3 訊號之計數及細分割處理 77
4.3.1 分向法及計數程式 77
4.3.2 細分割程式 79
4.4 定位誤差補償 80
4.4.1 機械原點 80
4.4.2 背隙補償 83
4.4.3 各軸定位誤差補償 85
4.5 本章小結 89
Chapter5 奈米運動控制系統之多自由度量測系統 90
5.1 多自由度量測系統 90
5.1.1 麥克森干涉儀 93
5.1.2 自動視準儀 95
5.1.3 波長補償模組 97
5.2 多自由度量測系統校正與即時波長補償 98
5.2.1 麥克森干涉儀校正 98
5.2.2 自動視準儀校正 101
5.2.3 即時波長補償 104
5.3 定位誤差補償 107
5.3.1 改良式共平面平台架構介紹 107
5.3.2 各軸定位誤差 114
5.4 本章小結 119
Chapter6 高精度共平面平台之誤差補償 120
6.1 體積誤差補償 120
6.1.1 平鏡面誤差 122
6.1.2 光程差 123
6.2 自校正 125
6.2.1 自校正公式推導 125
6.2.2 自校正模擬測試 127
6.3 本章小結 130
Chapter7 結論與未來展望 131
7.1 結論 131
7.2 未來展望 132
REFERENCE 134
dc.language.isozh-TW
dc.subject線性繞射光柵干涉儀zh_TW
dc.subject共平面平台zh_TW
dc.subject阿貝誤差zh_TW
dc.subject自調式類神經控制zh_TW
dc.subject多自由度量測系統zh_TW
dc.subject即時波長補償zh_TW
dc.subject誤差補償zh_TW
dc.subjectError compensationen
dc.subjectMulti-degree-of-freedom measurement system (MDFMS)en
dc.subjectReal time wavelength correctionen
dc.subjectCo-planar stageen
dc.subjectAbbe erroren
dc.subjectSelf-tuning Neuro-PIDen
dc.subjectLinear diffraction grating interferometer (LDGI)en
dc.title高精度奈米級共平面移動台之研製zh_TW
dc.titleDevelopment of High Precision Nanometer Level Co-planar Stageen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳亮嘉(Liang-Chia Chen),傅立成(Li-Chen Fu),朱志良(Chih-Liang Chu),覺文郁(Wen-Yu Jywe),修芳仲(Fang-Jung Shiou)
dc.subject.keyword共平面平台,阿貝誤差,自調式類神經控制,線性繞射光柵干涉儀,多自由度量測系統,即時波長補償,誤差補償,zh_TW
dc.subject.keywordCo-planar stage,Abbe error,Self-tuning Neuro-PID,Linear diffraction grating interferometer (LDGI),Multi-degree-of-freedom measurement system (MDFMS),Real time wavelength correction,Error compensation,en
dc.relation.page142
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
12.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved