Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓玉山(Yu-San Han)
dc.contributor.authorHsiang-Yi Hsuen
dc.contributor.author許翔奕zh_TW
dc.date.accessioned2021-06-16T06:40:19Z-
dc.date.available2016-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-07-29
dc.identifier.citationAanes, H., Winata, C.L., Lin, C.H., Chen, J.P., Srinivasan, K.G., Lee, S.G., Lim, A.Y., Hajan, H.S., Collas, P., Bourque, G., Gong, Z., Korzh, V., Alestrom, P. & Mathavan, S. (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res, 21, 1328-1338.
Alldredge, A.L. & Silver, M.W. (1988) Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 20, 41-82.
Altschul, S.F., L., M.T., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389-3402.
Birol, I., Jackman, S.D., Nielsen, C.B., Qian, J.Q., Varhol, R., Stazyk, G., Morin, R.D., Zhao, Y., Hirst, M., Schein, J.E., Horsman, D.E., Connors, J.M., Gascoyne, R.D., Marra, M.A. & Jones, S.J. (2009) De novo transcriptome assembly with ABySS. Bioinformatics, 25, 2872-2877.
Brouillettea, C.G., Anantharamaiah, G.M., Engler, J.A. & Borhani, D.W. (2001) Structural models of human apolipoprotein A-I: a critical analysis and review. . Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1531, 4–46.
Butler, J., Maccallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C. & Jaffe, D.B. (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res, 18, 810-820.
Cheng, P.W. & Tzeng, W.N. (1996) Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Marine Ecology Progress Series, 131, 87-96.
Choudhury, M., Oku, T., Yamada, S., Komatsu, M., Kudoh, K., Itakura, T. & Ando, S. (2011) Isolation and characterization of some novel genes of the apolipoprotein A-I family in Japanese eel, Anguilla japonica. Central European Journal of Biology, 6, 545-557.
Coppe, A., Pujolar, J.M., Maes, G.E., Larsen, P.F., Hansen, M.M., Bernatchez, L., Zane, L. & Bortoluzzi, S. (2010) Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered European eel. BMC Genomics, 11, 635.
Datta, S., Luo, C.C., Li, W.H., Tuinen, P.V., Ledbetter, D.H., Brown, M.A., Chen, S.H., Liu, S.W. & Chan, L. (1988) Human hepatic lipase: cloned cDNA sequence, restriction fragment length polymorphisms, chromosomal localization, and evolutionary relationships with lipoprotein lipase and pancreatic lipase. The Journal of Biological Chemistry, 263, 1107-1110.
De Bruijn, N.G. (1946) A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen, 49, 758-764.
Dekker, W. (2003) Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fisheries Management and Ecology, 10, 365-376.
Douglas, S.E. & Gallant, J.W. (1998) Isolation of cDNAs for trypsinogen from the winter flounder, Pleuronectes americanus. Journal of Marine Biotechnology, 6, 214-219.
Engel, A. & Handel, N. (2011) A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater. Marine Chemistry, 127, 180-191.
Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L.L. & Bateman, A. (2008) The Pfam protein families database. Nucleic Acids Res, 36, D281-288.
Furuita, H., Murashita, K., Matsunari, H., Yamamoto, T., Nagao, J., Nomura, K. & Tanaka, H. (2014) Decreasing dietary lipids improves larval survival and growth of Japanese eel Anguilla japonica. Fisheries Science, 80, 581-587.
Gerich, J.E., Meyer, C., Woerle, H.J. & Stumvoll, M. (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care, 24, 382-391.
Glew, R.H. (2010) You can get there from here: Acetone, anionic ketones and even-carbon fatty acids can provide substrates for gluconeogenesis. Nigeria Journal of Physiology Science, 25, 2-4.
Govoni, J.J. (2010) Feeding on protists and particulates by the leptocephali of the worm eels Myrophis spp. (Teleostei: Anguilliformes: Ophichthidae), and the potential energy contribution of large aloricate protozoa. Scientia Marina, 74, 339-344.
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. & Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 29, 644-652.
Haas, B.J. & Zody, M.C. (2010) Advancing RNA-Seq analysis. Nat Biotechnol, 28, 421-423.
Henkel, C.V., Dirks, R.P., De Wijze, D.L., Minegishi, Y., Aoyama, J., Jansen, H.J., Turner, B., Knudsen, B., Bundgaard, M., Hvam, K.L., Boetzer, M., Pirovano, W., Weltzien, F.A., Dufour, S., Tsukamoto, K., Spaink, H.P. & Van Den Thillart, G.E. (2012) First draft genome sequence of the Japanese eel, Anguilla japonica. Gene, 511, 195-201.
Hiller, D., Jiang, H., Xu, W. & Wong, W.H. (2009) Identifiability of isoform deconvolution from junction arrays and RNA-Seq. Bioinformatics, 25, 3056-3059.
Ijiri, S., Tsukamoto, K., Chow, S., Kurogi, H., Adachi, S. & Tanaka, H. (2011) Controlled reproduction in the Japanese eel (Anguilla japonica), past and present. Aquaculture Europe, 36, 13-17.
Ishikawa, S., Suzuki, K., Inagaki, T., Watanabe, S., Kimura, Y., Okamura, A., Otake, T., Mochioka, N., Suzuki, Y., Hasumoto, H., Oya, M., Miller, M.J., Lee, T.W., Fricke, H. & Tsukamoto, K. (2001) Spawning time and place of the Japanese eel (Anguilla japonica )in the North Equatorial Current of the western North Pacific Ocean. Fisheries Science, 67, 1097-1103.
Jung, H., Lyons, R.E., Dinh, H., Hurwood, D.A., Mcwilliam, S. & Mather, P.B. (2011) Transcriptomics of a Giant Freshwater Prawn (Macrobrachium rosenbergii ): De Novo Assembly, Annotation and Marker Discovery
PLoS ONE, 6, e27938.
Kanehisa, M. & Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28, 27-30.
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res, 40, D109-114.
Kondo, H., Kawazoe, I., Nakaya, M., Kikuchi, K., Aida, K. & Watabe, S. (2001) The novel sequences of major plasma apolipoproteins in the eel Anguilla japonica. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1531, 132-142.
Kurokawa, T., Kagawa, H., Ohta, H., Tanaka, H., Okuzawa, K. & Hirose, K. (1995) Development of digestive organs and feeding ability in larvae of Japanese eel (Anguilla japonica). Canadian Journal of Fisheries and Aquatic Sciences, 52, 1030-1036.
Kurokawa, T. & Pedersen, B.H. (2003) The digestive system of eel larvae. In: Eel biology (ed. by K. Aida, K. Tsukamoto & K. Yamauchi), pp. 435-444. Springer-Verlag, Tokyo
Kurokawa, T. & Suzuki, T. (1995) Structure of the exocrine pancreas of flounder (Paralichthys olivaceus): immunological localization of zymogen granules in the digestive tract using anti-trypsinogen antibody. Journal of Fish Biology, 46, 292-301.
Kurokawa, T., Suzuki, T., Ohta, H., Kagawa, H., Tanaka, H. & Unuma, T. (2002) Expression of pancreatic enzyme genes during the early larval stage of Japanese eel, Anguilla japonica. Fisheries Science, 68, 736-744.
Kurokawa, T., Tanaka, H., Kagawa, H. & Ohta, H. (1996) Absorption of Protein Molecules by the Rectal Cells in Eel Larvae Anguilla japonica. Fisheries Science, 62, 832-833.
Kuroki, M., Aoyama, J., Miller, M.J., Yoshinaga, T., Shinoda, A., Hagihara, S. & Tsukamoto, K. (2009) Sympatric spawning of Anguilla marmorata and Anguilla japonica in the western North Pacific Ocean. Journal of Fish Biology, 74, 1853-1865.
Li, B. & Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K. & Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966-1967.
Liao, I.C. (2001) A general review on aqualture in Asia: a focus on anguillid eel. In: 5th and 6th Asian Fisheries Forums, pp. 39-54. AFS Special Publication (11), Chiang Mai, Thailand.
Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 18, 1509-1517.
Masuda, Y., Imaizumi, H., Usuki, H., Oda, K., Hashimoto, H. & Teruya, K. (2012) Artificial completion of the Japanese eel, Anguilla japonica, life cycle: Challenge to mass production. Bulletin of Fisheries Research Agency, 35, 111-117.
Miller, M.J. (2009) Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. In: Aqua-BioScience Monographs (ABSM), pp. 1-94.
Miller, M.J., Otake, T., Aoyama, J., Wouthuyzen, S., Suharti, S., Sugeha, H.Y. & Tsukamoto, K. (2012) Observations of gut contents of leptocephali in the North Equatorial Current and Tomini Bay, Indonesia. Coastal marine science, 35, 277-288.
Mochioka, N. & Iwamizu, M. (1996) Diet of anguillid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. . Marine Biology, 125, 447-452.
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C. & Kanehisa, M. (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35, W182-185.
Mortazavi, A., Williams, B.A., Mccue, K., Schaeffer, L. & Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5, 621-628.
Murashita, K., Furuita, H., Matsunari, H., Yamamoto, T., Awaji, M., Nomura, K., Nagao, J. & Tanaka, H. (2013) Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish Physiol Biochem, 39, 895-905.
Nayak, S.K. (2010) Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553-1573.
Newman, M., Verdile, G., Martins, R.N. & Lardelli, M. (2011) Zebrafish as a tool in Alzheimer's disease research. Biochim Biophys Acta, 1812, 346-352.
Ohta, H., Kagawa, H., Tanaka, H., Okuzawa, K., Iinuma, N. & Hirose, K. (1997) Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiol Biochem, 17, 163-169.
Okamura, A., Horie, N., Mikawa, N., Yamada, Y. & Tsukamoto, K. (2014) Recent advances in artificial production of glass eels for conservation of anguillid eel populations. Ecology of Freshwater Fish, 23, 95-110.
Okiyama, M. (1979a) Manuals for the larval fish taxonomy. III. Metamorphosis of the cluproid fishes and problems of larval convergence (in Japanese, with English abstract). . Aquabiology, 1, 61-66.
Okiyama, M. (1979b) Manuals for the larval fish taxonomy. 4. Anguilliform-type metamorphosis (in Japanese, with English abstract).
. Aquabiology, 2, 62-68.
Otake, T. (1996) Fine structure and function of the alimentary canal in leptocephali of the Japanese eel Anguilla japonica. Fisheries Science, 62, 28-34.
Otake, T., Nogami, K. & Maruyama, K. (1993) Dissolved and particulate organic matter as possible food sources for eel leptocephali. Marine Ecology Progress Series, 92, 27-34.
Ozaki, Y., Tanaka, H., Kagawa, H., Ohta, H., Adachi, S. & Yamauchi, K. (2006) Fine structure and differentiation of the alimentary canal in captive-bred Japanese eel Anguilla japonica preleptocephali. Fisheries Science, 72, 13-19.
Petersen, T.N., Brunak, S., Von Heijne, G. & Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 8, 785-786.
Pevzner, P.A., Tang, H. & Waterman, M.S. (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A, 98, 9748-9753.
Pfeiler, E. (1999) Developmental physiology of elopomorph leptocephali. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 123, 113-128.
Rath, J. & Herndl, G.J. (1994) Characteristics and diversity of beta-d-glucosidase (EC 3.2.1.21) activity in marine snow. Applied and Environmental Microbiology, 60, 807-813.
Riemann, L., Alfredsson, H., Hansen, M.M., Als, T.D., Nielsen, T.G., Munk, P., Aarestrup, K., Maes, G.E., Sparholt, H., Petersen, M.I., Bachler, M. & Castonguay, M. (2010) Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol Lett, 6, 819-822.
Satoh, H. (1979) Try for perfect culture of the Japanese eel (in Japanese). Industrial Design Educators Network, 33, 23–30
Sonnhammer, E.L.L., Von Heijne, G. & Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In: ISMB-98 Proceedings, p. Paper presented at the Ismb.
Stojmirovic, A. & Yu, Y.K. (2010) Robust and accurate data enrichment statistics via distribution function of sum of weights. Bioinformatics, 26, 2752-2759.
Tanaka, H. (1998) Production of eel fry. Farming Japan, 32, 22-27.
Tanaka, H., Kagawa, H. & Ohta, H. (2001) Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture, 201, 51-60.
Tanaka, H., Kagawa, H., Ohta, H., Okuzawa, K. & Hirose, K. (1995) The first report of eel larvae ingesting rotifers. Fisheries Science, 61, 171-172.
Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. & Nomura, K. (2003) The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol Biochem, 28, 493-497.
Tatsukawa, K. (2003) Eel resources in east asia. In: Eel Biology (ed. by K. Aida, K. Tsukamoto & K. Yamauchi), pp. 293-298. Springer-Verlag, Tokyo.
Tesch, F.W. (2003) Developmental stages and distribution of the eel species. In: The eel (ed. by J.E. Thorpe), pp. 73-118.
Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., Salzberg, S.L., Wold, B.J. & Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Natuew Biotechnology, 28, 511-515.
Tse, W.K., Sun, J., Zhang, H., Law, A.Y., Yeung, B.H., Chow, S.C., Qiu, J.W. & Wong, C.K. (2013) Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica). J Proteomics, 89, 81-94.
Tsukamoto, K. (1992) Discovery of the spawning area for Japanese eel. Nature, 356, 789-791.
Tsukamoto, K. (2006) Oceanic biology: spawning of eels near a seamount. Nature, 439, 929.
Tsukamoto, K. (2009) Oceanic migration and spawning of anguillid eels. Journal of Fish Biology, 74, 1833-1852.
Tsukamoto, K., Aoyama, J. & Miller, M.J. (2009) Present status of the Japanese eel: resources and recent research. In: Eels at the edge: American Fisheries Society, Symposium 58. (ed. by J.M. Casselman, Cairns, D.), pp. 21-35, D Bethesda, Maryland.
Tsukamoto, K., Lee, T.W. & Mochioka, N. (1994) Age and growth of Japanese eel leptocephali. . In: Preliminary report of the Hakuho Maru cruise KH-91–4. (ed. by T. Otake, Tsukamoto, K. ), pp. 50-54. Ocean Research Institute, University of Tokyo, Tokyo.
Ueberschar, B., Pedersen, B.H. & Hjelmeland, K. (1992) Quantification of trypsin with a radioimmunoassay in herring larvae (Clupea harengus) compared with a highly sensitive fluorescence technique to determine tryptic enzyme activity. Marine Biology, 113, 469-473.
Wang, Y., Zhao, C., Shin, Z., Ten, Y., Zhang, K., Li, Y., Yang, Y. & Hong, Y. (1980) Studies on the artificial inducement of reproduction in common eel (in Chinese, with English abstract). . Journal of Fisheries of China, 4, 147–158
Westerberg, H. (1990) A proposal regarding the source of nutrition of leptocephalus larvae. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 75, 863-864.
Yamamoto, J. & Yamauchi, K. (1974) Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature, 251, 220-222.
Yamauchi, K., Nakamura, M., Takahashi, H. & Takano, K. (1976) Cultivation of larvae of Japanese eel. Nature, 263, 412.
Yu, T.C., Tsai, C.L., Tsai, Y.S. & Lai, J.Y. (1993) Induced breeding of Japanese eels, Anguilla japonica (in Chinese, with English abstract). Journal of Taiwan Fisheries Research, 1, 27-34.
Zeng, S. & Gong, Z. (2002) Expressed sequence tag analysis of expression profiles of zebrafish testis and ovary. Gene, 294, 45-53.
Zerbino, D.R. & Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 18, 821-829.
Zhao, Q.Y., Wang, Y., Kong, Y.M., Luo, D., Li, X. & Hao, P. (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics, 12 (Suppl 14), S2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57284-
dc.description.abstract近幾年,因為過漁、棲地破壞、海洋環境改變等因素影響,造成日本鰻鰻苗的資源量急遽下降。因此,為了減少對野生資源的利用,發展人工繁殖技術來健全日本鰻的養殖產業已經成為主要的目標。而人工繁殖技術的發展,在育苗的階段因無法開發出仔稚魚合適的飼料轉換技術,使得仔稚魚成長率及存活率偏低。本研究透過與日本研究團隊合作,在馬里亞納海脊以西海域附近採集了3隻日本鰻柳葉鰻、5隻前柳葉鰻、及10顆的胚胎,以及在宜蘭河口採集到1隻玻璃鰻。並藉由次世代定序技術來重建日本鰻完整的轉錄體以及探討仔稚魚消化道裏存在的消化酶和營養運輸蛋白之基因表現情況,進一步釐清日本鰻仔稚魚對食物消化以及營養吸收的能力。
本定序實驗共產生約三億條長度為100 bps的短序列,濾除adaptors及品質較差的短序列之後,再經由序列組裝程式Trinity的組裝,共組出224,043條轉錄序列。其中116,146條序列被預測具有可轉譯區域(長度大於50 a.a.)。而這116,146條序列與蛋白質資料庫nr database進行比對,有70,096條序列可以比對到特定蛋白質。而在這些蛋白質中,有90.2%在輻鰭魚綱中可找到同源基因。而從實驗的分析結果顯示,前柳葉鰻有很好的蛋白質消化能力,但是醣類及脂質的消化能力並不佳。而在柳葉鰻裡也同樣有類似的模式,但是醣類及脂質整體的消化能力比前柳葉鰻還要來的好。另外,玻璃鰻對蛋白質、醣類、脂質的消化能力則都差不多。而在營養吸收方面,在前柳葉鰻和柳葉鰻,的確也有較好的胺基酸吸收能力,而醣類的吸收能力次之,但對膽固醇有較差的吸收能力。而玻璃鰻有極佳的胺基酸吸收能力,醣類吸收能力比起前兩個階段也有下滑的趨勢,有趣的是,膽固醇運輸蛋白則是近乎沒有表現。前柳葉鰻和柳葉鰻腸道的醣類消化能力並不好,但卻有良好的吸收能力,這也許跟腸道益生菌協助消化有關,或者是仔稚魚本身偏好直接吸收食物中的單醣和雙醣。還有玻璃鰻對於脂質的消化能力不差,但膽固醇運輸蛋白表現量低,這也許是跟有良好功能的脂質分解酶和細胞膜本身的組成特性有關,因為小分子的脂質代謝產物通常可以直接穿過細胞膜。以上這些資訊,能提供仔稚魚飼料開發及配方比例轉換技術有利的參考資料。而關於這四個階段的轉錄體序列資料及註解資料,已經建立線上資料庫開放查詢,來協助日本鰻基礎生物研究的進行。
zh_TW
dc.description.abstractNatural stocks of A. japonica’s glass eels have decreased dramatically due to overfishing, environmental destruction and change of ocean conditions in recent years. Therefore, in order to reduce the consumption of wild glass eels, developing techniques of artificial production for improving Japanese eel farming industry has become a major goal. As a result of no appropriate feed conversion method currently applied on the breeding process of eel larvae, the growth rate and survival rate are extremely low. In this study, three leptocephali, five preleptocephali, and ten embryos were collected near the Mariana ridge by cooperating with the Japanese team, and one glass eel was collected at the estuary of Yilan River. All the samples were submitted for RNA-seq by next-generation sequencing for reconstructing complete transcriptome of Japanese eel. Furthermore, the expressions of digestive enzymes and nutrient transporters existing in small intestine were investigated for realizing the digestive and absorptive capacities of Japanese eel larvae.
A total of ~30 million raw reads (100 PE) were generated in our experiment and assembled into 224,043 transcripts after eliminating adaptors and low quality reads. Moreover, 116,146 transcripts were predicted to have open reading frames, and these putative protein-coding transcripts were submitted to blast against nr database. Subsequently, 70,096 transcripts were found positive hits, 90.2% of which were homologous genes of Actinopterygii. Besides, our analytic results showed that the digestive capacity of protein is terrific in preleptocephalus, but the digestive capacities of carbohydrate and lipid are very poor. In addition, a similar pattern is also found in leptocephalus, but the digestive capacities of carbohydrate and lipid are relatively better than in preleptocephalus. Furthermore, glass eel has average capacities for digesting protein, carbohydrate and lipid. In nutrient absorption, the absorptive capacity of amino acids is actually the best in preleptocephalus and leptocephalus, followed by the absorptive capacity of glucose which is better than cholesterol. Additionally, in glass eel, the absorptive capacity of amino acids is also superb, but the absorptive capacity of glucose is significant decreased than previous stages. Interestingly, the cholesterol transporters almost have no expression in glass eel. The digestive capacity of carbohydrate is poor in preleptocephalus and leptocephalus, but absorptive capacity is good. This may be related to gut microbiota in them, or they prefer to directly absorb monosaccharide or disaccharide in the food. Moreover, the digestive capacity of lipid is terrific in glass eel, but the absorptive capacity of cholesterol is poor, which may be associated with the well-functioned lipase and structural properties of plasma membrane because the small molecules of lipid end-products usually can pass through the plasma membrane. Based on above results, much useful information can be provided for developing artificial feed and feed conversion method. An online database for accessing the de novo assembled transcripts of four transcriptome data and annotated result of each transcript has been established. This database will be public for researching community of Japanese eel, and it can assist researchers in studying fundamental eel biology and artificial production.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:40:19Z (GMT). No. of bitstreams: 1
ntu-103-R01b45008-1.pdf: 1778598 bytes, checksum: af16efa7499779684cfb6e4c03478e30 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要...i
Abstract...iii
Content...1
Table content...3
Figure legend...4
1. Introduction...5
2. Material & methods...12
2.1 Experimental procedures and sample collection...12
2.2 RNA extraction, cDNA library construction and sequencing...12
2.3 Processing of sequence data...13
2.4 de novo assembly...13
2.5 Functional annotation...15
2.6 Gene expression analysis...17
2.7 Construction of a transcriptome database of Japanese eel ...19
3. Results...20
3.1 Pre-processing and post-processing sequencing data and de novo assembly...20
3.2 Functional annotations for protein-coding transcripts...21
3.3 Gene Ontology (GO) analysis classified the transcripts into three categories...22
3.4 KEGG pathways analysis...23
3.5 Expressional profiles of digestive enzymes specifically existing in digestive tract at different stages...25
3.6 Expressional profiles of nutrient transporters existing in intestinal epithelial cells and renal cells at different stage...31
3.7 Online transcriptome database of Japanese eel...35
4. Discussion...37
4.1 De novo transcriptome assembly and quality validation of transcripts...37
4.2 Comparing with recent studies in eel transcriptome...40
4.3 Expression-abundance estimation of genes and its limitations...41
4.4 The importance of pancreatic digestive enzymes and activity measurement...42
4.5 Body composition of leptocephalus and its possible carbohydrate source...44
4.6 Why the expressional pattern of transporters is not consistent with digestive enzymes in glass eel?...46
4.7 Encountered problems in the development of artificial feed of Japanese eel...48
5. Conclusion...50
6. Reference...52
dc.language.isoen
dc.subject柳葉鰻zh_TW
dc.subject消化酵素zh_TW
dc.subject營養運輸蛋白zh_TW
dc.subject人工繁殖zh_TW
dc.subject次世代定序zh_TW
dc.subjectartificial productionen
dc.subjectleptocephalien
dc.subjectnext-generation sequencingen
dc.subjectdigestive enzymeen
dc.subjectnutrient transporteren
dc.title利用次世代定序來解析日本鰻胚胎、前柳葉鰻、柳葉鰻及玻璃鰻之轉錄體概況並探討其仔稚魚消化和吸收能力zh_TW
dc.titleDeciphering theTranscriptome of Embryo, Pre-leptocephali, Leptocephali, and Glass Eel of the Japanese Eel (Anguilla japonica) by Using Next-Generation Sequencing and Investigating the Digestive and Absorptive Capacities of Larvaeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱國平(Kuo-Ping Chiu),陳柏仰(Pao-Yang Chen),林仲彥(Chung-Yen Lin),陳淑華(Shu-Hwa Chen)
dc.subject.keyword人工繁殖,柳葉鰻,次世代定序,消化酵素,營養運輸蛋白,zh_TW
dc.subject.keywordartificial production,leptocephali,next-generation sequencing,digestive enzyme,nutrient transporter,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved