Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57282
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊家榮(Chia-Ron Yang)
dc.contributor.authorYi-Ling Hsiehen
dc.contributor.author謝宜伶zh_TW
dc.date.accessioned2021-06-16T06:40:16Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-07-29
dc.identifier.citation1. Bosch A, Eroles P, Zaragoza R, Vina JR, Lluch A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev. 2010, 36: 206-215.
2. Bayraktar S, Gluck S. Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res Treat. 2013, 138(1):21-35.
3. Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG, Kang J. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 2011, 25: 1677-1681.
4. Xu J, Wu X, Zhou WH, Liu AW, Wu JB, Deng JY, Yue CF, Yang SB, Wang J, Yuan ZY, Liu Q. Aurora-A identifies early recurrence and poor prognosis and promises a potential therapeutic target in triple negative breast cancer. PLoS One. 2013, 8(2):e56919.
5. Wang LH, Xiang J, Yan M, Zhang Y, Zhao Y, Yue CF, Xu J, Zheng FM, Chen JN, Kang Z, Chen TS, Xing D, Liu Q. The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res. 2010, 70: 9118-9128.
6. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010, 7: 683-692.
7. Trivers KF, Lund MJ, Porter PL, Liff JM, Flagg EW, Coates RJ, Eley JW. The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control. 2009, 20: 1071-1082.
8. Lin Y, Yin W, Yan T, Zhou L, Di G, Wu J, Shen Z, Shao Z, Lu J. Site-specific relapse pattern of the triple negative tumors in Chinese breast cancer patients. BMC Cancer. 2009, 24: 342.
9. Lin C, Chien SY, Kuo SJ, Chen LS, Chen ST, Lai HW, Chang TW, Chen DR. A 10-year follow-up of triple-negative breast cancer patients in Taiwan. Jpn J Clin Oncol. 2012, 42: 161-167.
10. Phipps AI, Chlebowski RT, Prentice R, et al. Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst. 2011, 103: 470.
11. Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013, 137: 307.
12. Schmadeka R, Harmon BE, Singh M. Triple-negative breast carcinoma: current and emerging concepts. Am J Clin Pathol. 2014, 141(4): 462-477.
13. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008, 26(8):1275-1281.
14. Piccart M, Viale G, Ellis P, Abramowicz M and Carey L. Tips and tricks in triple-negative breast cancer: how to manage patients in real-life practice. Ecancermedicalscience. 2011, 5:217.
15. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007, 13:4429-4434.
16. Virani S, Colacino JA, Kim JH, Rozek LS. Cancer epigenetics: a brief review. ILAR J. 2012, 53(3-4):359-369.
17. Ho E, Clarke JD, Dashwood RH. Dietary Sulforaphane, a Histone Deacetylase Inhibitor for Cancer Prevention. J Nutr. 2009, 139(12):2393-2396.
18. Federico M, Bagella L. Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol. 2011, 2011:475641.
19. Hagelkruys A, Sawicka A, Rennmayr M, Seiser C. The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol. 2011, 206: 13-37.
20. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol. 2005, 45:495-528.
21. Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem. 2005, 96(2):293-304.
22. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007, 5(10):981-989.
23. Dallavalle S, Pisano C, Zunino F. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol. 2012, 84: 756-765.
24. Tang J, Yan H, Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond). 2013, 124: 651-662.
25. Byrd JC, Marcucci G, Parthun MR, Xiao JJ, Klisovic RB, Moran M, Lin TS, Liu S, Sklenar AR, Davis ME, Lucas DM, Fischer B, Shank R, Tejaswi SL, Binkley P, Wright J, Chan KK, Grever MR. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood. 2005, 105(3):959-967.
26. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009, 8; 277: 8-21.
27. Li Y, Shin D, Kwon SH. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 2013, 280: 775-793.
28. Valenzuela-Fernandez A, Cabrero JR, Serrador JM, Sanchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008, 18: 291-297.
29. Perego P, Zuco V, Gatti L, Zunino F. Sensitization of tumor cells by targeting histone deacetylases. Biochem Pharmacol. 2012, 83: 987-994.
30. Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, Lombard D, Mizeracki A, Matthias G, Alt FW, Khochbin S, Matthias P. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol. 2008, 28(5):1688-1701.
31. Shi YK, Li ZH, Han XQ, Yi JH, Wang ZH, Hou JL, Feng CR, Fang QH, Wang HH, Zhang PF, Wang FS, Shen J, Wang P. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemother Pharmacol. 2010, 66: 1131-1140.
32. Hatakeyama S, Nakayama KI. Ubiquitylation as a quality control system for intracellular proteins. J Biochem. 2003, 134(1):1-8.
33. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science. 1999, 286(5446): 1888-1893.
34. Hideshima T, Richardson PG, Anderson KC. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther. 2011, 10(11):2034-2042.
35. Meraldi P, Honda R, Nigg EA. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev. 2004, 14: 29-36.
36. Mountzios G, Terpos E, Dimopoulos MA. Aurora kinases as targets for cancer therapy. Cancer Treat Rev. 2008, 34(2):175-182.
37. Wan XB, Long ZJ, Yan M, Xu J, Xia LP, Liu L, Zhao Y, Huang XF, Wang XR, Zhu XF, Hong MH, Liu Q. Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis. 2008, 29(10):1930-1937.
38. Guan Z, Wang XR, Zhu XF, Huang XF, Xu J, Wang LH, Wan XB, Long ZJ, Liu JN, Feng GK, Huang W, Zeng YX, Chen FJ, Liu Q. Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res. 2007, 67(21):10436-10444.
39. Bailly M, Condeelis J. Cell motility: insights from the backstage. Nat Cell Biol. 2002, 4(12):E292-294.
40. Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer. 2007, 7(6):429-440.
41. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS. Cofilin promotes actin polymerization and defines the direction of cell motility. Science. 2004, 304(5671):743-746.
42. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC, Cirstea D, Rodig S, Eda H, Scullen T, Canavese M, Bradner J, Anderson KC, Jones SS, Raje N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012, 119(11):2579-2589.
43. Hurst DR, Mehta A, Moore BP, Phadke PA, Meehan WJ, Accavitti MA, Shevde LA, Hopper JE, Xie Y, Welch DR, Samant RS. Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun. 2006, 348(4):1429-1435.
44. Rey M, Irondelle M, Waharte F, Lizarraga F, Chavrier P. HDAC6 is required for invadopodia activity and invasion by breast tumor cells. Eur J Cell Biol. 2011, 90(2-3):128-135.
45. Glenisson W, Castronovo V, Waltregny D. Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta. 2007, 1773(10):1572-1582.
46. Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, Pili R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006, 66(17):8814-8821.
47. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, Itoh A, Funata N, Schreiber SL, Yoshida M, Toi M. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene. 2005, 24(28):4531-4539.
48. Boss DS, Beijnen JH, Schellens JH. Clinical experience with aurora kinase inhibitors: a review. Oncologist. 2009, 14(8):780-793.
49. Park JH, Jong HS, Kim SG, Jung Y, Lee KW, Lee JH, Kim DK, Bang YJ, Kim TY. Inhibitors of histone deacetylases induce tumor-selective cytotoxicity through modulating Aurora-A kinase. J Mol Med (Berl). 2008, 86: 117-128.
50. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem. 2005, 280(29):26729-34.
51. Fiskus W, Hembruff SL, Rao R, Sharma P, Balusu R, Venkannagari S, Smith JE, Peth K, Peiper SC, Bhalla KN. Co-treatment with vorinostat synergistically enhances activity of Aurora kinase inhibitor against human breast cancer cells. Breast Cancer Res Treat. 2012, 135(2):433-44.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57282-
dc.description.abstract實驗目的:三重陰性乳癌相較其他乳癌更具侵略性及轉移性,臨床上病人預後較差且容易復發與轉移,可能與三重陰性乳癌大量表現Aurora-A (極光激酶A)有關,而此蛋白表現受到其上游HDAC6 (組蛋白去乙醯酶6)所調控,因此,抑制HDAC6可能可以抑制三重陰性乳癌轉移。本研究將探討一新型化合物──專一性HDAC6抑制劑Azaaryl衍生物MPT0G211針對三重陰性乳癌在細胞移行能力的影響,並結合目前普遍治療三重陰性乳癌之化療藥物──微管穩定劑Taxol (紫杉醇)在實驗動物模型中抗癌細胞轉移之加成效果探討。
實驗方法:利用wound healing assay評估MPT0G211以及結合Taxol對三重陰性乳癌細胞移動能力之抑制效用;以免疫沉澱法觀察MPT0G211影響Hsp90 (熱休克蛋白90)乙醯化程度與Aurora-A之間交互作用;mRNA及蛋白質之表現由即時定量聚合酶鏈鎖反應與西方墨點法來觀察;細胞中球型肌動蛋白與絲肌動蛋白比例由G-actin/F-actin assay kit測定;利用phalloidin染色法觀察細胞肌動蛋白的聚集現象。另外,藉由在乳癌細胞中過量表現HDAC6來確認MPT0G211是否透過抑制HDAC6影響Aurora-A及其下游蛋白降低細胞移動能力。而在動物模式我們評估MPT0G211結合Taxol在活體內抑制癌細胞轉移之效果。
實驗結果:在本研究中,相較目前普遍已知HDAC6抑制劑Tubastatin A,MPT0G211有更好的抑制三重陰性乳癌細胞移動能力,且結合Taxol效果更為顯著。MPT0G211能藉由抑制HDAC6,促使Aurora-A與Hsp90分離,失去Hsp90保護的Aurora-A會被proteasome (蛋白酶體)降解,降低其下游去磷酸酶SSH1的基因轉錄,使能促進肌動蛋白聚集之cofilin (肌動蛋白解聚因子)非活化態增多,肌動蛋白無法聚集的情況下,細胞移動的第一步驟──偽足形成則受到抑制;而在荷爾蒙受體陽性之乳癌細胞SSH1與活化態之cofilin的原本表現較三重陰性乳癌低,受此影響不大,說明cofilin-F-actin路徑在三重陰性乳癌相對重要,MPT0G211可針對於此有效治療易轉移的三重陰性乳癌。在動物實驗中,MPT0G211在25 mg/kg的腹腔注射給予之下,可抑制三重陰性乳癌之轉移,結合Taxol則有更顯著抑制效果。
結論:實驗結果顯示,在三重陰性乳癌當中,MPT0G211可藉由抑制HDAC6促使Aurora-A降解,有效抑制cofilin-F-actin路徑,降低細胞移行能力,於動物實驗中可抑制癌細胞轉移,並增強Taxol治療效果。目前在市面上或是臨床試驗並無專一性的HDAC6抑制劑用於治療三重陰性乳癌,因此,MPT0G211提供了轉移性高的三重陰性乳癌療效好、與傳統化療藥物合併可降低毒性的絕佳治療選擇。
zh_TW
dc.description.abstractObjective. Triple-negative breast cancer (TNBC) is more invasive and has higher metastatic rate compared to other breast cancers. Patients with TNBC have poor prognosis with high risk of relapse and metastasis. It may be related to Aurora-A overexpression in TNBC, which is dysregulated by histone deacetylase 6 (HDAC6). Therefore, HDAC6 inhibitor may act as a treatment for metastatic TNBC. The aim of this study is to investigate the impact of azaaryl derivative MPT0G211, a novel HDAC6 inhibitor, on cell migration of triple-negative cell line and hormone receptor positive cell line as comparison, by in vitro and in vivo models. We also examined the combinatorial effect of MPT0G211 with a microtubule stabilizing agent, Taxol, which is commonly used as chemotherapy in TNBC.
Methods. Cell migration was evaluated by wound healing assay. Protein-protein interaction was studied by immunoprecipitation. Messenger RNA and protein expression level were determined by QPCR and western blot. Filamentous actin (F-actin) and globular actin (G-actin) fractions were obtained using an F-actin/G-actin assay kit. F-actin polymerization was observed by phalloidin staining. Animal study was evaluated by MDA-MB-231 tumor metastatic assay and IHC stain.
Results. In this study, MPT0G211 exhibited higher selectivity and lower IC50 against HDAC6 compared to a well-known HDAC6 selective inhibitor Tubastatin A. MPT0G211 not only decreased triple-negative breast cancer cell migration, but also enhanced the inhibitory effect of Taxol. We observed that MPT0G211 increased Hsp90 acetylation resulting in disassociation with Aurora-A, the unprotected Aurora-A then was degraded by proteasome. Furthermore, MPT0G211 significantly disrupted F-actin polymerization via decreasing the expression of slingshot protein phosphatase 1 (SSH1) and cofilin active form. Consequently, formation of lamellipodia was inhibited by MPT0G211. In addition, hormone receptor positive MCF-7 cell line has lower SSH1 and cofilin expression compared to triple-negative MDA-MB-231 cell line, suggesting that cofilin-F-actin-mediated cell migration may has more important role in invasive TNBC cells. In animal study, intraperitoneal injection of MPT0G211 (25 mg/kg) significantly ameliorated TNBC metastasis, and enhanced inhibitory effect of Taxol.
Conclusion. Our results showed that MPT0G211 promotes Aurora-A degradation and inhibits cofilin-F-actin pathway by inhibiting HDAC6 activity, then decreases cell motility. Therefore, HDAC6 inhibitor MPT0G211 may provide a better treatment option when combined with traditional chemotherapy for invasive TNBC.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:40:16Z (GMT). No. of bitstreams: 1
ntu-103-R01423016-1.pdf: 9038151 bytes, checksum: 55197b25f0c8b04162aeea1bd049a4bf (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌------------------------------------------------------------------------------------I
目錄-----------------------------------------------------------------------------------II
縮寫表-------------------------------------------------------------------------------III中文摘要--------------------------------------------------------------------------- IV
英文摘要--------------------------------------------------------------------------- VI
第一章 研究動機與目的--------------------------------------------------------1
第二章 文獻回顧-----------------------------------------------------------------2
第三章 實驗材料與方法-------------------------------------------------------21
第四章 實驗結果----------------------------------------------------------------29
第五章 討論----------------------------------------------------------------------35
第六章 結論與展望-------------------------------------------------------------39
參考文獻----------------------------------------------------------------------------61
dc.language.isozh-TW
dc.subject極光激?蛋白Azh_TW
dc.subject組蛋白去乙醯?6zh_TW
dc.subject絲肌動蛋白zh_TW
dc.subject細胞移動zh_TW
dc.subject三重陰性乳癌zh_TW
dc.subject紫杉醇zh_TW
dc.subjectTaxolen
dc.subjectCell migrationen
dc.subjectHistone deacetylase 6en
dc.subjectAurora-Aen
dc.subjectF-actinen
dc.subjectTriple-negative breast canceren
dc.title新型Azaaryl HDAC6抑制劑在三重陰性乳癌中抑制細胞移行且增強Taxol抗轉移效果之研究zh_TW
dc.titleThe Study of Azaaryl-Derivative Novel Histone Deacetylase 6 Inhibitor Reduces Triple-Negative Breast Cancer Cell Migration and Enhances Anti-metastatic Effect of Taxolen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉景平,潘秀玲,鄧哲明
dc.subject.keyword三重陰性乳癌,細胞移動,組蛋白去乙醯?6,極光激?蛋白A,絲肌動蛋白,紫杉醇,zh_TW
dc.subject.keywordTriple-negative breast cancer,Cell migration,Histone deacetylase 6,Aurora-A,F-actin,Taxol,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
8.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved