Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57274
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇(Bing-Yu Chen)
dc.contributor.authorShao-Chi Chenen
dc.contributor.author陳少祁zh_TW
dc.date.accessioned2021-06-16T06:40:00Z-
dc.date.available2024-12-31
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citation[1] A. Agarwalaa, C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless, D. Salesin, and R. Szelisk. Panoramic video textures. ACM Trans. Graphics, 24(3):821–827, 2005.
[2] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In Proc. European Conf. Computer Vision, pages 404–417, 2006.
[3] M. Brown and D. G. Lowe. Recognising panoramas. In Proc. IEEE Intl. Conf. Computer Vision, pages 1218–1225 vol.2, 2003.
[4] M. Brown and D. G. Lowe. Automatic panoramaic image stitching using invariant features. ACM Trans. Graphics, 74(1):59–73, 2007.
[5] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In Proc. European Conf. Computer Vision, volume 3024 of Lecture Note in Computer Science, pages 25–36. Springer, May 2004.
[6] Y. Caspi and M. Irani. Spatio-temporal alignment of sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(11):1409–1424, 2002.
[7] S. Drew, C. Pal, and S. Richard. Efficiently registering video into panoramic mosaics. In Proc. IEEE Intl. Conf. Computer Vision, pages 1300–1307, 2005.
[8] G. Evangelidis and C. Bauckhage. Efficient subframe video alignment using short descriptors. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(10):2371–2386, 2013.
[9] G. Farneb‥ack. Two-frame motion estimation based on polynomial expansion. In Proceedings of the 13th Scandinavian Conference on Image Analysis, SCIA’03, pages 363–370, Berlin, Heidelberg, 2003. Springer-Verlag.
[10] J. Gao, S. J. Kim, and M. S. Brown. Constructing image panoramas using dual-homography warping. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 49–56, 2011.
[11] P. E. R. Gomes, F. Vieira, and M. Ferreira. The see-through system: From implementation to test-drive. In Proc. IEEE Vehicular Networking Conf., pages 40–47, 2012.
[12] M. Granados, K. I. Kim, J. Tompkin, J. Kautz, and C. Theobalt. Background inpainting for videos with dynamic objects and a free-moving camera. In Proc. European Conf. Computer Vision, pages 682–659, 2012.
[13] B. K. P. Horn and B. G. Schunck. Determining optical flow. ARTIFICAL INTELLIGENCE, 17:185–203, 1981.
[14] K.-Y. Lee, Y.-Y. Chuang, B.-Y. Chen, and M. Ouhyoung. Video stabilization using robust feature trajectories. In Proc. IEEE Intl. Conf. Computer Vision, pages 1307–1404, 2009.
[15] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection. In Image Processing. 2002. Proceedings. 2002 International Conference on, volume 1, pages I–900–I–903 vol.1, 2002.
[16] W.-Y. Lin, S. Liu, Y. Matsushita, T.-T. Ng, and L. F. Cheong. Smoothly varying affine stitching. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 345–352, 2011.
[17] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Intl. Journal Computer Vision, 60:91–110, 2004.
[18] B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proc. Intl. Joint Conf. Artificial Intelligence, pages 674–679, 1981.
[19] S.-J. Luo, I.-C. Shen, B.-Y. Chen,W.-H. Cheng, and Y.-Y. Chuang. Perspective-aware warping for seamless stereoscopic image cloning. Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2012), 31(6):182:1–182:8, 2012.
[20] C. Olaverri-Monreal, P. E. R. Gomes, R. Fernandes, F. Vieira, and M. Ferreira. The seethrough system: A vanet-enabled assistant for overtaking maneuvers. In Proc. Intelligent Vehicles Sympos., pages 123–128, 2010.
[21] P. Sand and S. J. Teller. Video matching. ACM Trans. Graphics, 23(3):592–599, 2004.
[22] J. S’anchez P’erez, E. Meinhardt-Llopis, and G. Facciolo. TV-L1 Optical Flow Estimation. Image Processing On Line, 3:137–150, 2013.
[23] R. Szeliski. Image alignment and stitching: a tutorial. Fundations and Trands in Computer Graphics and Vision., 2(1):1–104, 2006.
[24] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mosaics and environment maps. In Proc. ACM SIGGRAPH, pages 251–258, 1997.
[25] D.-N. Ta,W.-C. Chen, N. Geldfand, and K. Pulli. Surftrac: Efficient tracking and continuous object recognition using local feature descriptors. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 2937–2944, 2009.
[26] M.W. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A non-iterative, sublinear optical flow algorithm. Computer Graphics Forum (Eurographics 2012), 31(2), May 2012.
[27] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, volume 1, pages I–511–I–518 vol.1, 2001.
[28] Y.-S. Wang, H. Fu, O. Sorkine, T.-Y. Lee, and H.-P. Seidel. Motion-aware temporal coherence for video resizing. ACM Trans. Graphics, 28(5), 2009.
[29] Y.Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 2411–2418, 2013.
[30] J. yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs, 2000.
[31] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l1 optical flow. In Proceedings of the 29th DAGM Conference on Pattern Recognition, pages 214–223, Berlin, Heidelberg, 2007. Springer-Verlag.
[32] J. Zaragoza, T.-J. Chin, M. S. Brown, and D. Suter. As-projective-as-possible image stitching with moving dlt. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 2339–2346, 2013.
[33] F. Zhang and F. Liu. Parallax-tolerant image stitching. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013.
[34] W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 1838–1845, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57274-
dc.description.abstract因前方車輛所造成的視線遮擋問題是威脅行車安全的重要因素之一,解決這個問題的其中一個可能方式,是將前方車輛以第一人稱視角所看到的景象分享給後方車輛,使其視野中被前方車輛遮擋住的區域能夠經由適當的修補而還原出,去除障礙物後的景象。然而,不同車輛間的攝影機鏡頭在幾何空間上的不一致,使得車對車的視覺分享與生成變得非常具有挑戰性。在本篇論文中,我們提出了一個能夠產生第一人稱視角的影像生成演算法來解決這類的問題。首先,我們先標記出後車視野中未被遮擋的部分作為我們的參考區域,接著迭帶地從前車影像中,估計出區域單應性轉換及進行視角適應性變形,我們即可對前車影像做區域性的形變,使其視角及輪廓邊緣能夠與後車被遮擋的部份對應,並能無縫地接合在一起,讓使用者看起來似乎是前方車輛變得半透明了。我們的系統改善了駕駛者的可見度,也因此降低了駕駛過程中的負擔,進而提昇駕駛舒適度。我們以幾組在實際駕駛情境中所拍攝的具挑戰性之測試資料來展示本系統的實用性及穩定性。zh_TW
dc.description.abstractVisual obstruction caused by a preceding vehicle is one of the key factors threatening driving safety. One possible solution is to share the first-person-view of the preceding vehicle to unveil the blocked field-of-view of the following vehicle. However, the geometric inconsistency caused by the camera-eye discrepancy renders view sharing between different cars a very challenging task. In this paper, we present a first-person-perspective image rendering algorithm to solve this problem. Firstly, we contour unobstructed view as the transferred region, then by iteratively estimating local homography transformations and performing perspective-adaptive warping using the estimated transformations, we are able to locally adjust the shape of the unobstructed view so that its perspective and boundary could be matched to that of the occluded region. Thus, the composited view is seamless in both the perceived perspective and photometric appearance. It creates an impression as if the preceding vehicle is transparent. Our system improves the driver’s visibility and thus relieving the burden on the driver, which in turn increases comfort. We demonstrate the usability and stability of our system by performing its evaluation with several challenging data sets collected from real-world driving scenarios.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:40:00Z (GMT). No. of bitstreams: 1
ntu-103-R01725023-1.pdf: 80476279 bytes, checksum: 4c336e02b2fdebbd599d885a7d07280c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract v
List of Figures viii
List of Tables xvi
Chapter 1 Introduction 1
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction of Dashcam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Motivation of Sharing First-Person-Views . . . . . . . . . . . . . . . . . . 2
1.4 Challenges of Sharing First-Person-Views . . . . . . . . . . . . . . . . . . 4
1.5 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 2 Related Work 8
2.1 The See-Through System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Image stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Motion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Video alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3 System Overview 13
3.1 Algorithmic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Prototype of System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 4 Method 18
4.1 Occlusion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Contour estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Perspective adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Perspective-aware warping and stitching . . . . . . . . . . . . . . . 23
4.3.2 Final stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 5 Experimental Results 29
5.1 Verification of perspective adaptation . . . . . . . . . . . . . . . . . . . . . 30
5.2 Qualitative comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 6 Conclusion and Future Work 47
6.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Bibliography 50
dc.language.isoen
dc.subject視覺分享zh_TW
dc.subject隨區域而調整之影像變形zh_TW
dc.subject影像接合zh_TW
dc.subject視角適應化zh_TW
dc.subjectspatial-varying image warpingen
dc.subjectperspective adaptationen
dc.subjectimage stitchingen
dc.subjectview sharingen
dc.title應用於駕駛輔助情境之第一人稱視覺分享系統zh_TW
dc.titleMaking in-Front-of Cars Transparent: Sharing First-Person-Views via Dashcamen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊永裕(Yung-Yu Chuang),林彥宇(Yen-Yu Lin),蔡欣穆(Hsin-Mu Tsai)
dc.subject.keyword視覺分享,隨區域而調整之影像變形,影像接合,視角適應化,zh_TW
dc.subject.keywordview sharing,spatial-varying image warping,image stitching,perspective adaptation,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
78.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved