請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘俊良(Chun-Liang Pan) | |
| dc.contributor.author | Chung-Kuan Chen | en |
| dc.contributor.author | 陳忠寬 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:39:26Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-30 | |
| dc.identifier.citation | Anderson, S. A., Eisenstat, D. D., Shi, L. and Rubenstein, J. L. (1997). Interneuron
migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474-476. Ayala, R., Shu, T. and Tsai, L. H. (2007). Trekking across the brain: the journey of neuronal migration. Cell 128, 29-43. Bloch-Gallego, E., Ezan, F., Tessier-Lavigne, M. and Sotelo, C. (1999). Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 4407-4420. Bourrat, F. and Sotelo, C. (1988). Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Brain research 467, 19-37. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Chai, Y., Tian, D., Yang, Y., Feng, G., Cheng, Z., Li, W. and Ou, G. (2012). Apoptotic regulators promote cytokinetic midbody degradation in C. elegans. The Journal of cell biology 199, 1047-1055. Chalfie, M. and Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Developmental biology 82, 358-370. Clark, S. G., Chisholm, A. D. and Horvitz, H. R. (1993). Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74, 43-55. Clevers, H. and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205. Goldstein, B., Takeshita, H., Mizumoto, K. and Sawa, H. (2006). Wnt signals can function as positional cues in establishing cell polarity. Developmental cell 10, 391-396. Harris, J., Honigberg, L., Robinson, N. and Kenyon, C. (1996). Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 122, 3117-3131. Harterink, M., Kim, D. H., Middelkoop, T. C., Doan, T. D., van Oudenaarden, A. and Korswagen, H. C. (2011). Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development 138, 2915-2924. Hawkins, N. C., Ellis, G. C., Bowerman, B. and Garriga, G. (2005). MOM-5 frizzled regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast divisions. Developmental biology 284, 246-259. Herman, M. (2001). C. elegans POP-1/TCF functions in a canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway that controls cell polarity. Development 128, 581-590. Hilliard, M. A. and Bargmann, C. I. (2006). Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Developmental cell 10, 379-390. Hingwing, K., Lee, S., Nykilchuk, L., Walston, T., Hardin, J. and Hawkins, N. (2009). CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a beta-catenin independent Wnt pathway. Developmental biology 328, 245-256. Honigberg, L. and Kenyon, C. (2000). Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development 127, 4655-4668. Kato, M. and Dobyns, W. B. (2003). Lissencephaly and the molecular basis of neuronal migration. Human molecular genetics 12 Spec No 1, R89-96. Klassen, M. P. and Shen, K. (2007). Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 130, 704-716. Kuhl, M., Sheldahl, L. C., Park, M., Miller, J. R. and Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16, 279-283. Kwan, K. Y., Lam, M. M., Krsnik, Z., Kawasawa, Y. I., Lefebvre, V. and Sestan, N. (2008). SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proceedings of the National Academy of Sciences of the United States of America 105, 16021-16026. Lyuksyutova, A. I., Lu, C. C., Milanesio, N., King, L. A., Guo, N., Wang, Y., Nathans, J., Tessier-Lavigne, M. and Zou, Y. (2003). Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984-1988. Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. and Kenyon, C. (1999). A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126, 37-49. Mello, C. and Fire, A. (1995). DNA transformation. Methods in cell biology 48, 451-482. Mello, C. C., Kramer, J. M., Stinchcomb, D. and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959-3970. Niu, W., Lu, Z. J., Zhong, M., Sarov, M., Murray, J. I., Brdlik, C. M., Janette, J., Chen, C., Alves, P., Preston, E., et al. (2011). Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Genome research 21, 245-254. Ou, G., Stuurman, N., D'Ambrosio, M. and Vale, R. D. (2010). Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330, 677-680. Ou, G. and Vale, R. D. (2009). Molecular signatures of cell migration in C. elegans Q neuroblasts. The Journal of cell biology 185, 77-85. Pan, C. L. (2008). Regulation of neuronal development by Wnt signaling in the nematode Caenorhabditis elegans (Unpublished doctoral dissertation). In Helen Wills Neuroscience Institute, pp. 237: University of California, Berkeley. Pan, C. L., Howell, J. E., Clark, S. G., Hilliard, M., Cordes, S., Bargmann, C. I. and Garriga, G. (2006). Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Developmental cell 10, 367-377. Sulston, J. E. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental biology 56, 110-156. Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R. W., Schwarz, T. L., Takeichi, M. and Uemura, T. (1999). Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585-595. Wang, B. B., Muller-Immergluck, M. M., Austin, J., Robinson, N. T., Chisholm, A. and Kenyon, C. (1993). A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 74, 29-42. Wang, X., Zhou, F., Lv, S., Yi, P., Zhu, Z., Yang, Y., Feng, G., Li, W. and Ou, G. (2013). Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration. Proceedings of the National Academy of Sciences of the United States of America 110, 11175-11180. Wang, Y. and Nathans, J. (2007). Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647-658. Whangbo, J. and Kenyon, C. (1999). A Wnt signaling system that specifies two patterns of cell migration in C-elegans. Molecular cell 4, 851-858. Yamamoto, Y., Takeshita, H. and Sawa, H. (2011). Multiple Wnts redundantly control polarity orientation in Caenorhabditis elegans epithelial stem cells. PLoS genetics 7, e1002308. Zinovyeva, A. Y. and Forrester, W. C. (2005). The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Developmental biology 285, 447-461. Zinovyeva, A. Y., Yamamoto, Y., Sawa, H. and Forrester, W. C. (2008). Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics 179, 1357-1371. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57256 | - |
| dc.description.abstract | Neuronal migration is an essential process that establishes the intricate and precise connectivity of the nervous system. Here, we study the molecular mechanisms of neuronal migration, using Q neuroblast lineages in C.elegans as a model. The left and right Q neuroblasts are equivalent lineages that show distinct migratory patterns along the antero-posterior axis. The Q descendants on the left (QL) migrate posteriorly, whereas those on the right (QR) migrate anteriorly. The posterior QL descendant migration requires the EGL-20/Wnt-dependent Hox gene mab-5. mab-5 repressed another Hox gene, lin-39, whose expression would otherwise promote anterior migration. In addition to this transcriptional regulation, another Wnt CWN-1 and Frizzled receptor MOM-5 promote QR anterior migration. We found that CWN-1/MOM-5 and LIN-39 act in parallel to promote Q cell anterior migration. CWN-1 instructed QR.pa anterior polarization and also influences the polarization of QL.pa that lacked EGL-20/MAB-5 signaling. We show that the Frizzleds MIG-1 and MOM-5 were expressed and functioned autonomously in the QL and QR descendants. Furthermore, we found that the planar cell polarity gene vang-1, which is the C. elegans homolog of the mammalian Vangl2 and Drosophila van Gogh/Strabismus, strongly suppressed QL anterior migration in the mig-1 mutant, and improved QR undermigration in the cwn-1 or egl-20 mutants. These data suggest that PCP genes regulate the Q cell migration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:39:26Z (GMT). No. of bitstreams: 1 ntu-103-R01448011-1.pdf: 17276253 bytes, checksum: 9809917eac0f71f840bdd9e0101ba6cf (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 論文審定書 i
TABLE OF CONTENTS ii ACKNOWLEDGEMENT iv 中文摘要 v ABSTRACT vi I. INTRODUCTION 1 1.1 Neuronal migration 1 1.2 Wnt signaling 3 1.3 Q neuroblast migration in C. elegans 4 II. MATERIALS AND METHODS 7 2.1 C.elegans Genetics 7 2.2 Plasmid Construction 8 2.3 Germline Transformation 9 2.4 Synchronization and Staging in Q cell Observation 9 2.5 LIN-39 Quantification 10 2.6 Q cell Polarization Analysis 11 2.7 Quantification of AVM and PVM Positions 11 III. RESULTS 12 3.1 LIN-39 Expression in the Q Lineages Was Independent of CWN-1 Signaling 12 3.2 cwn-1 and mom-5 Promote Q.pa Anterior Polarization 14 3.3 The Frizzleds MIG-1 and MOM-5 Function Autonomously to Regulate Q Cell Polarization 17 3.4 vang-1/van Gogh Antagonizes Wnt Signaling 18 IV. DISCUSSION 22 V. FIGURES 26 Figure 1. Development of the Q Neuroblast Lineages in C. elegans 26 Figure 2. Examples of Wnt Pathways in C. elegans and in Mammals 28 Figure 3. LIN-39 Expression in the QL Lineage. 30 Figure 4. LIN-39 Expression in the QR Lineage. 32 Figure 5. Quantification of Migratory Q.pa Cell Polarization. 34 Figure 6. Polarity Index in the QL.pa Cells 36 Figure 7. Polarity Index in the QR.pa Cells 38 Figure 8. Ectopic CWN-1 Expression Patterns of twnEx113, twnEx114, and twnEx162 40 Figure 9. CWN-1 Expression Patterns Induced by Heat Shock 42 Figure 10. The Polarity Indeces of QL.pa and QR.pa in Animals with Various cwn-1 Transgenes. 44 Figure 11. mom-5 Expression Patterns 46 Figure 12. mom-5 Was Expressed in the Q Lineages. 48 Figure 13. MOM-5 Overexpression Disrupted Q Cell Migration. 50 Figure 14. mig-1 Was Expressed in the Q Lineages. 52 Figure 15. mig-1 Functioned Autonomously in the Q Lineage 54 Figure 16. The vang-1 Mutation Rescued the PVM Mismigration in the mig-1 Mutant 56 Figure 17. The vang-1 Mutation Rescued AVM undermigration in the cwn-1 or the egl-20 Mutants 58 Figure 18. The vang-1 Mutation did not Rescue the QL.pa Polarization Defects of the mig-1 Mutant 60 Figure 19. The arr-1/arrestin1 Mutation Suppressed the PVM Defects of the mig-1 but not the mab-5 Mutants. 62 Figure 20. Model for how two Wnt signals Differentially Regulate Q Cell Migration 64 Table 1. List of primers for construct cloning 66 VI. REFERENCE 68 Appendix I. Cell position of QR.paa and QR.pap Normaski scoring in L1 animals 72 Appendix II. Cell position of QL.paa and QL.pap Normaski scoring in L1 animals 74 | |
| dc.language.iso | en | |
| dc.subject | Q細胞 | zh_TW |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | 秀麗線蟲 | zh_TW |
| dc.subject | Wnt信號傳遞 | zh_TW |
| dc.subject | Hox基因 | zh_TW |
| dc.title | Wnt對線蟲Q細胞極性和移動的調控 | zh_TW |
| dc.title | Wnt Signaling regulates Q Neuroblast Cell Polarization and Migration in Caenorhabditis elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳益群(Yi-Chun Wu),吳君泰(June-Tai Wu) | |
| dc.subject.keyword | 秀麗線蟲,Q細胞,細胞遷移,Wnt信號傳遞,Hox基因, | zh_TW |
| dc.subject.keyword | Caenorhabditis elegans,Q neuroblast,neuronal migration,Wnt signaling,Hox gene, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 16.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
