Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57256
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘俊良(Chun-Liang Pan)
dc.contributor.authorChung-Kuan Chenen
dc.contributor.author陳忠寬zh_TW
dc.date.accessioned2021-06-16T06:39:26Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citationAnderson, S. A., Eisenstat, D. D., Shi, L. and Rubenstein, J. L. (1997). Interneuron
migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278,
474-476.
Ayala, R., Shu, T. and Tsai, L. H. (2007). Trekking across the brain: the journey of
neuronal migration. Cell 128, 29-43.
Bloch-Gallego, E., Ezan, F., Tessier-Lavigne, M. and Sotelo, C. (1999). Floor plate
and netrin-1 are involved in the migration and survival of inferior olivary neurons. The
Journal of neuroscience : the official journal of the Society for Neuroscience 19,
4407-4420.
Bourrat, F. and Sotelo, C. (1988). Migratory pathways and neuritic differentiation of
inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab
technique. Brain research 467, 19-37.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Chai, Y., Tian, D., Yang, Y., Feng, G., Cheng, Z., Li, W. and Ou, G. (2012).
Apoptotic regulators promote cytokinetic midbody degradation in C. elegans. The
Journal of cell biology 199, 1047-1055.
Chalfie, M. and Sulston, J. (1981). Developmental genetics of the mechanosensory
neurons of Caenorhabditis elegans. Developmental biology 82, 358-370.
Clark, S. G., Chisholm, A. D. and Horvitz, H. R. (1993). Control of cell fates in the
central body region of C. elegans by the homeobox gene lin-39. Cell 74, 43-55.
Clevers, H. and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149,
1192-1205.
Goldstein, B., Takeshita, H., Mizumoto, K. and Sawa, H. (2006). Wnt signals can
function as positional cues in establishing cell polarity. Developmental cell 10, 391-396.
Harris, J., Honigberg, L., Robinson, N. and Kenyon, C. (1996). Neuronal cell
migration in C. elegans: regulation of Hox gene expression and cell position.
Development 122, 3117-3131.
Harterink, M., Kim, D. H., Middelkoop, T. C., Doan, T. D., van Oudenaarden, A.
and Korswagen, H. C. (2011). Neuroblast migration along the anteroposterior axis of
C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related
protein. Development 138, 2915-2924.
Hawkins, N. C., Ellis, G. C., Bowerman, B. and Garriga, G. (2005). MOM-5 frizzled
regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast
divisions. Developmental biology 284, 246-259.
Herman, M. (2001). C. elegans POP-1/TCF functions in a canonical Wnt pathway that
controls cell migration and in a noncanonical Wnt pathway that controls cell polarity.
Development 128, 581-590.
Hilliard, M. A. and Bargmann, C. I. (2006). Wnt signals and frizzled activity orient
anterior-posterior axon outgrowth in C. elegans. Developmental cell 10, 379-390.
Hingwing, K., Lee, S., Nykilchuk, L., Walston, T., Hardin, J. and Hawkins, N.
(2009). CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast
division in a beta-catenin independent Wnt pathway. Developmental biology 328,
245-256.
Honigberg, L. and Kenyon, C. (2000). Establishment of left/right asymmetry in
neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C.
elegans. Development 127, 4655-4668.
Kato, M. and Dobyns, W. B. (2003). Lissencephaly and the molecular basis of
neuronal migration. Human molecular genetics 12 Spec No 1, R89-96.
Klassen, M. P. and Shen, K. (2007). Wnt signaling positions neuromuscular
connectivity by inhibiting synapse formation in C. elegans. Cell 130, 704-716.
Kuhl, M., Sheldahl, L. C., Park, M., Miller, J. R. and Moon, R. T. (2000). The
Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet
16, 279-283.
Kwan, K. Y., Lam, M. M., Krsnik, Z., Kawasawa, Y. I., Lefebvre, V. and Sestan, N.
(2008). SOX5 postmitotically regulates migration, postmigratory differentiation, and
projections of subplate and deep-layer neocortical neurons. Proceedings of the National
Academy of Sciences of the United States of America 105, 16021-16026.
Lyuksyutova, A. I., Lu, C. C., Milanesio, N., King, L. A., Guo, N., Wang, Y.,
Nathans, J., Tessier-Lavigne, M. and Zou, Y. (2003). Anterior-posterior guidance of
commissural axons by Wnt-frizzled signaling. Science 302, 1984-1988.
Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. and Kenyon, C. (1999).
A Wnt signaling pathway controls hox gene expression and neuroblast migration in C.
elegans. Development 126, 37-49.
Mello, C. and Fire, A. (1995). DNA transformation. Methods in cell biology 48,
451-482.
Mello, C. C., Kramer, J. M., Stinchcomb, D. and Ambros, V. (1991). Efficient gene
transfer in C.elegans: extrachromosomal maintenance and integration of transforming
sequences. EMBO J 10, 3959-3970.
Niu, W., Lu, Z. J., Zhong, M., Sarov, M., Murray, J. I., Brdlik, C. M., Janette, J.,
Chen, C., Alves, P., Preston, E., et al. (2011). Diverse transcription factor binding
features revealed by genome-wide ChIP-seq in C. elegans. Genome research 21,
245-254.
Ou, G., Stuurman, N., D'Ambrosio, M. and Vale, R. D. (2010). Polarized myosin
produces unequal-size daughters during asymmetric cell division. Science 330, 677-680.
Ou, G. and Vale, R. D. (2009). Molecular signatures of cell migration in C. elegans Q
neuroblasts. The Journal of cell biology 185, 77-85.
Pan, C. L. (2008). Regulation of neuronal development by Wnt signaling in the
nematode Caenorhabditis elegans (Unpublished doctoral dissertation). In Helen Wills
Neuroscience Institute, pp. 237: University of California, Berkeley.
Pan, C. L., Howell, J. E., Clark, S. G., Hilliard, M., Cordes, S., Bargmann, C. I.
and Garriga, G. (2006). Multiple Wnts and frizzled receptors regulate anteriorly
directed cell and growth cone migrations in Caenorhabditis elegans. Developmental cell
10, 367-377.
Sulston, J. E. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode,
Caenorhabditis elegans. Developmental biology 56, 110-156.
Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R. W., Schwarz, T. L.,
Takeichi, M. and Uemura, T. (1999). Flamingo, a seven-pass transmembrane cadherin,
regulates planar cell polarity under the control of Frizzled. Cell 98, 585-595.
Wang, B. B., Muller-Immergluck, M. M., Austin, J., Robinson, N. T., Chisholm, A.
and Kenyon, C. (1993). A homeotic gene cluster patterns the anteroposterior body axis
of C. elegans. Cell 74, 29-42.
Wang, X., Zhou, F., Lv, S., Yi, P., Zhu, Z., Yang, Y., Feng, G., Li, W. and Ou, G.
(2013). Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the
cell polarity in neuronal migration. Proceedings of the National Academy of Sciences of
the United States of America 110, 11175-11180.
Wang, Y. and Nathans, J. (2007). Tissue/planar cell polarity in vertebrates: new
insights and new questions. Development 134, 647-658.
Whangbo, J. and Kenyon, C. (1999). A Wnt signaling system that specifies two
patterns of cell migration in C-elegans. Molecular cell 4, 851-858.
Yamamoto, Y., Takeshita, H. and Sawa, H. (2011). Multiple Wnts redundantly
control polarity orientation in Caenorhabditis elegans epithelial stem cells. PLoS
genetics 7, e1002308.
Zinovyeva, A. Y. and Forrester, W. C. (2005). The C. elegans Frizzled CFZ-2 is
required for cell migration and interacts with multiple Wnt signaling pathways.
Developmental biology 285, 447-461.
Zinovyeva, A. Y., Yamamoto, Y., Sawa, H. and Forrester, W. C. (2008). Complex
network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans
development. Genetics 179, 1357-1371.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57256-
dc.description.abstractNeuronal migration is an essential process that establishes the intricate and precise connectivity of the nervous system. Here, we study the molecular mechanisms of neuronal migration, using Q neuroblast lineages in C.elegans as a model. The left and right Q neuroblasts are equivalent lineages that show distinct migratory patterns along the antero-posterior axis. The Q descendants on the left (QL) migrate posteriorly, whereas those on the right (QR) migrate anteriorly. The posterior QL descendant migration requires the EGL-20/Wnt-dependent Hox gene mab-5. mab-5 repressed another Hox gene, lin-39, whose expression would otherwise promote anterior migration. In addition to this transcriptional regulation, another Wnt CWN-1 and Frizzled receptor MOM-5 promote QR anterior migration. We found that CWN-1/MOM-5 and LIN-39 act in parallel to promote Q cell anterior migration. CWN-1 instructed QR.pa anterior polarization and also influences the polarization of QL.pa that lacked EGL-20/MAB-5 signaling. We show that the Frizzleds MIG-1 and MOM-5 were expressed and functioned autonomously in the QL and QR descendants. Furthermore, we found that the planar cell polarity gene vang-1, which is the C. elegans homolog of the mammalian Vangl2 and Drosophila van Gogh/Strabismus, strongly suppressed QL anterior migration in the mig-1 mutant, and improved QR undermigration in the cwn-1 or egl-20 mutants. These data suggest that PCP genes regulate the Q cell migration.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:39:26Z (GMT). No. of bitstreams: 1
ntu-103-R01448011-1.pdf: 17276253 bytes, checksum: 9809917eac0f71f840bdd9e0101ba6cf (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents論文審定書 i
TABLE OF CONTENTS ii
ACKNOWLEDGEMENT iv
中文摘要 v
ABSTRACT vi
I. INTRODUCTION 1
1.1 Neuronal migration 1
1.2 Wnt signaling 3
1.3 Q neuroblast migration in C. elegans 4
II. MATERIALS AND METHODS 7
2.1 C.elegans Genetics 7
2.2 Plasmid Construction 8
2.3 Germline Transformation 9
2.4 Synchronization and Staging in Q cell Observation 9
2.5 LIN-39 Quantification 10
2.6 Q cell Polarization Analysis 11
2.7 Quantification of AVM and PVM Positions 11
III. RESULTS 12
3.1 LIN-39 Expression in the Q Lineages Was Independent of CWN-1 Signaling 12
3.2 cwn-1 and mom-5 Promote Q.pa Anterior Polarization 14
3.3 The Frizzleds MIG-1 and MOM-5 Function Autonomously to Regulate Q Cell Polarization 17
3.4 vang-1/van Gogh Antagonizes Wnt Signaling 18
IV. DISCUSSION 22
V. FIGURES 26
Figure 1. Development of the Q Neuroblast Lineages in C. elegans 26
Figure 2. Examples of Wnt Pathways in C. elegans and in Mammals 28
Figure 3. LIN-39 Expression in the QL Lineage. 30
Figure 4. LIN-39 Expression in the QR Lineage. 32
Figure 5. Quantification of Migratory Q.pa Cell Polarization. 34
Figure 6. Polarity Index in the QL.pa Cells 36
Figure 7. Polarity Index in the QR.pa Cells 38
Figure 8. Ectopic CWN-1 Expression Patterns of twnEx113, twnEx114, and twnEx162 40
Figure 9. CWN-1 Expression Patterns Induced by Heat Shock 42
Figure 10. The Polarity Indeces of QL.pa and QR.pa in Animals with Various cwn-1 Transgenes. 44
Figure 11. mom-5 Expression Patterns 46
Figure 12. mom-5 Was Expressed in the Q Lineages. 48
Figure 13. MOM-5 Overexpression Disrupted Q Cell Migration. 50
Figure 14. mig-1 Was Expressed in the Q Lineages. 52
Figure 15. mig-1 Functioned Autonomously in the Q Lineage 54
Figure 16. The vang-1 Mutation Rescued the PVM Mismigration in the mig-1 Mutant 56
Figure 17. The vang-1 Mutation Rescued AVM undermigration in the cwn-1 or the egl-20 Mutants 58
Figure 18. The vang-1 Mutation did not Rescue the QL.pa Polarization Defects of the mig-1 Mutant 60
Figure 19. The arr-1/arrestin1 Mutation Suppressed the PVM Defects of the mig-1 but not the mab-5 Mutants. 62
Figure 20. Model for how two Wnt signals Differentially Regulate Q Cell Migration 64
Table 1. List of primers for construct cloning 66
VI. REFERENCE 68
Appendix I. Cell position of QR.paa and QR.pap Normaski scoring in L1 animals 72
Appendix II. Cell position of QL.paa and QL.pap Normaski scoring in L1 animals 74
dc.language.isoen
dc.subjectQ細胞zh_TW
dc.subject細胞遷移zh_TW
dc.subject秀麗線蟲zh_TW
dc.subjectWnt信號傳遞zh_TW
dc.subjectHox基因zh_TW
dc.titleWnt對線蟲Q細胞極性和移動的調控zh_TW
dc.titleWnt Signaling regulates Q Neuroblast Cell Polarization and Migration in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳益群(Yi-Chun Wu),吳君泰(June-Tai Wu)
dc.subject.keyword秀麗線蟲,Q細胞,細胞遷移,Wnt信號傳遞,Hox基因,zh_TW
dc.subject.keywordCaenorhabditis elegans,Q neuroblast,neuronal migration,Wnt signaling,Hox gene,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
16.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved