Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57250
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇(Bing-Yu Chen)
dc.contributor.authorTzu-chun Wuen
dc.contributor.author吳姿君zh_TW
dc.date.accessioned2021-06-16T06:39:15Z-
dc.date.available2022-08-01
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation[1] P. Abtahi, B. Landry, J. Yang, M. Pavone, S. Follmer, and J. A. Landay. Beyond the force: Using quadcopters to appropriate objects and the environment for haptics in virtual reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2019.
[2] O. Bau, I. Poupyrev, A. Israr, and C. Harrison. Teslatouch: electrovibration for touch surfaces. In Proceedings of the 23nd annual ACM symposium on User interface software and technology, pages 283–292. ACM, 2010.
[3] H. Benko, C. Holz, M. Sinclair, and E. Ofek. Normaltouch and texturetouch: High-fidelity 3d haptic shape rendering on handheld virtual reality controllers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 717–728, 2016.
[4] H.-Y. Chang, W.-J. Tseng, C.-E. Tsai, H.-Y. Chen, R. L. Peiris, and L. Chan. Facepush: Introducing normal force on face with head-mounted displays. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pages 927–935, 2018.
[5] Y. Cho, A. Bianchi, N. Marquardt, and N. Bianchi-Berthouze. Realpen: Providing realism in handwriting tasks on touch surfaces using auditory-tactile feedback. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 195–205, 2016.
[6] I. Choi, E. W. Hawkes, D. L. Christensen, C. J. Ploch, and S. Follmer. Wolverine: A wearable haptic interface for grasping in virtual reality. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 986–993. IEEE, 2016.
[7] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. Claw: A multifunctional handheldhaptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2018.
[8] X. Gu, Y. Zhang, W. Sun, Y. Bian, D. Zhou, and P. O. Kristensson. Dexmo: An inexpensive and lightweight mechanical exoskeleton for motion capture and force feedback in vr. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 1991–1995, 2016.
[9] J. Gugenheimer, D. Wolf, E. R. Eiriksson, P. Maes, and E. Rukzio. Gyrovr: Simulating inertia in virtual reality using head worn flywheels. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 227–232, 2016.
[10] T. Han, Q. Han, M. Annett, F. Anderson, D.-Y. Huang, and X.-D. Yang. Frictio: Passive kinesthetic force feedback for smart ring output. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pages 131–142, 2017.
[11] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–11, 2018.
[12] H. Iwata, H. Yano, and H. Tomioka. Powered shoes. In ACM SIGGRAPH 2006 Emerging
technologies, page 28. ACM, 2006.
[13] H. Iwata, H. Yano, and M. Tomiyoshi. String walker. In ACM SIGGRAPH 2007 emerging technologies, pages 20–es. 2007.
[14] S. Je, M. J. Kim, W. Lee, B. Lee, X.-D. Yang, P. Lopes, and A. Bianchi. Aero-plane: A handheld force-feedback device that renders weight motion illusion on a virtual 2d plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 763–775, 2019.
[15] S. Je, H. Lee, M. J. Kim, and A. Bianchi. Wind-blaster: a wearable propeller-based prototype that provides ungrounded force-feedback. In ACM SIGGRAPH 2018 Emerging Technologies, pages 1–2. 2018.
[16] A. W. Law, B. V. Peck, Y. Visell, P. G. Kry, and J. R. Cooperstock. A multi-modal floorspace for experiencing material deformation underfoot in virtual reality. In 2008 IEEE International Workshop on Haptic Audio visual Environments and Games, pages 126–131. IEEE, 2008.
[17] J.-Y. Lo, D.-Y. Huang, C.-K. Sun, C.-E. Hou, and B.-Y. Chen. Rollingstone: Using single slip taxel for enhancing active finger exploration with a virtual reality controller. In The 31st Annual ACM Symposium on User Interface Software and Technology, pages 839–851. ACM, 2018.
[18] P. Lopes, A. Ion, and P. Baudisch. Impacto: Simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology, pages 11–19, 2015.
[19] P. Lopes, S. You, L.-P. Cheng, S. Marwecki, and P. Baudisch. Providing haptics to walls heavy objects in virtual reality by means of electrical muscle stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 1471–1482, 2017.
[20] J. Mullenbach, D. Johnson, J. E. Colgate, and M. A. Peshkin. Activepad surface haptic device. In 2012 IEEE Haptics Symposium (HAPTICS), pages 407–414. IEEE, 2012.
[21] S. Sagheb, F.W. Liu, A. Bahremand, A. Kidane, and R. LiKamWa. Swish: A shifting-weight interface of simulated hydrodynamics for haptic perception of virtual fluid vessels. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 751–761, 2019.
[22] T. Sasaki, R. S. Hartanto, K.-H. Liu, K. Tsuchiya, A. Hiyama, and M. Inami. Leviopole: mid-air haptic interactions using multirotor. In ACM SIGGRAPH 2018 Emerging Technologies, pages 1–2. 2018.
[23] D. Schmidt, R. Kovacs, V. Mehta, U. Umapathi, S. K¨ohler, L.-P. Cheng, and P. Baudisch. Level-ups: Motorized stilts that simulate stair steps in virtual reality. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 2157–2160. ACM, 2015.
[24] S. B. Schorr and A. M. Okamura. Fingertip tactile devices for virtual object manipulation and exploration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 3115–3119. ACM, 2017.
[25] J. Shigeyama, T. Hashimoto, S. Yoshida, T. Aoki, T. Narumi, T. Tanikawa, and M. Hirose. Transcalibur: weight moving vr controller for dynamic rendering of 2d shape using haptic shape illusion. In ACM SIGGRAPH 2018 Emerging Technologies, pages 1–2. 2018.
[26] H. Son, H. Gil, S. Byeon, S.-Y. Kim, and J. R. Kim. Realwalk: Feeling ground surfaces while walking in virtual reality. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, page D400. ACM, 2018.
[27] E. Strasnick, C. Holz, E. Ofek, M. Sinclair, and H. Benko. Haptic links: Bimanual haptics for virtual reality using variable stiffness actuation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2018.
[28] P. Strohmeier, J. Burstyn, J. P. Carrascal, V. Levesque, and R. Vertegaal. Reflex: A flexible smartphone with active haptic feedback for bend input. In Proceedings of the TEI’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pages 185–192, 2016.
[29] P. Strohmeier and K. Hornbæk. Generating haptic textures with a vibrotactile actuator. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 4994–5005, 2017.
[30] Y. Sun, S. Yoshida, T. Narumi, and M. Hirose. Pacapa: A handheld vr device for rendering size, shape, and stiffness of virtual objects in tool-based interactions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2019.
[31] S.-Y. Teng, D.-Y. Huang, C. Wang, J. Gong, T. Seyed, X.-D. Yang, and B.-Y. Chen. Aarnio: Passive kinesthetic force output for foreground interactions on an interactive chair. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2019.
[32] S.-Y. Teng, T.-S. Kuo, C. Wang, C.-h. Chiang, D.-Y. Huang, L. Chan, and B.-Y. Chen. Pupop: Pop-up prop on palm for virtual reality. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pages 5–17, 2018.
[33] S.-Y. Teng, C.-L. Lin, C.-h. Chiang, T.-S. Kuo, L. Chan, D.-Y. Huang, and B.-Y. Chen. Tilepop: Tile-type pop-up prop for virtual reality. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 639–649, 2019.
[34] H.-R. Tsai and B.-Y. Chen. Elastimpact: 2.5 d multilevel instant impact using elasticity on head-mounted displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 429–437, 2019.
[35] H.-R. Tsai, C.-W. Hung, T.-C. Wu, and B.-Y. Chen. Elastoscillation: 3d multilevel force feedback for damped oscillation on vr controllers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2020.
[36] H.-R. Tsai, J. Rekimoto, and B.-Y. Chen. Elasticvr: Providing multilevel continuously changing resistive force and instant impact using elasticity for vr. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–10, 2019.
[37] D. Tsetserukou, K. Sato, and S. Tachi. Exointerfaces: novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation. In Proceedings of the 1st Augmented Human International Conference, pages 1–6, 2010.
[38] Q. Wang, X. Ren, and X. Sun. Ev-pen: an electrovibration haptic feedback pen for touchscreens. In SIGGRAPH ASIA 2016 Emerging Technologies, page 8. ACM, 2016.
[39] E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair. Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2018.
[40] L. Winfield, J. Glassmire, J. E. Colgate, and M. Peshkin. T-pad: Tactile pattern display through variable friction reduction. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), pages 421–426. IEEE, 2007.
[41] T. Yokota, M. Ohtake, Y. Nishimura, T. Yui, R. Uchikura, and T. Hashida. Snow walking: motion-limiting device that reproduces the experience of walking in deep snow. In Proceedings of the 6th Augmented Human International Conference, pages 45–48, 2015.
[42] A. Zenner and A. Kr¨uger. Shifty: A weight-shifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE transactions on visualization and computer graphics, 23(4):1285–1294, 2017.
[43] A. Zenner and A. Kr¨uger. Drag: on: A virtual reality controller providing haptic feedback based on drag and weight shift. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57250-
dc.description.abstract為了提升虛擬實境的真實感,許多觸覺回饋的研究已被提出討論。然而,走在不同地面材質,或是踏在不同物體例如香蕉皮,所需要的腳部摩擦力觸覺回饋,還未被虛擬實境有關觸覺回饋的研究所充分探討。因此我們提出了一個穿戴式裝置,FrictShoes。透過獨立控制每個FrictShoe底座四個輪子上的四片煞,這個裝置能夠提供鞋底與地面之間多層次且非對稱的摩擦力觸覺回饋。如此一來,每個輪子的摩擦力程度大小能夠和其他輪子提供的一樣,也能夠不同。我們進行了一個力的感知實驗,了解使用者對於摩擦力大小的分辨程度。基於上述實驗的結果,我們進一步設計了不同摩擦力組合的辨識實驗,觀察使用者是否能夠辨認輪子之間的摩擦力差異。最後,我們進行虛擬實境體驗,驗證是否鞋底與地面之間多層次且非對稱的摩擦力觸覺回饋能夠顯著提升虛擬實境之體驗。zh_TW
dc.description.abstractMany haptic feedback has been proposed to enhance realism in virtual reality (VR). However, friction on feet, which renders feedback of walking on different terrains or ground textures or stepping on objects like a banana peel, is still not explored in VR haptic research. We propose a wearable device, FrictShoes, to provide multilevel nonuniform friction feedback on feet. This is achieved by independently controlling four brakes on four wheels underneath each FrictShoe device. Therefore, friction levels of the wheels on each device could be either the same or different. We conducted a force perception study to understand users’ distinguishability of friction force levels. Based on the results, we performed a friction pattern recognition study to realize what nonuniform friction patterns users can recognize. Finally, a VR experience study is performed to prove that the proposed multilevel nonuniform friction feedback on feet enhances VR experience.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:39:15Z (GMT). No. of bitstreams: 1
U0001-2207202011175200.pdf: 16285831 bytes, checksum: 14f3f6b0c8f9587c2457c839f8f3dd86 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Haptic Feedback in Virtual Reality . . . . . . . . . . . . . . . . . . . . . .5
2.2 Friction Feedback Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Haptic Feedback on Feet in Virtual Reality . . . . . . . . . . . . . . . . . 10
Chapter 3 FrictShoes 12
3.1 Design Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 4 Implementation 17
4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 5 Force Perception Study 25
5.1 Apparatus and Participants . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Force Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter 6 Nonuniform Pattern Recognition Study 36
6.1 Apparatus and Participants . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Chapter 7 VR Experience Study 43
7.1 Apparatus and Participants . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Chapter 8 Limitation and Future Work 52
Chapter 9 Conclusion 53
Bibliography 54
dc.language.isoen
dc.subject穿戴式裝置zh_TW
dc.subject觸覺回饋zh_TW
dc.subject摩擦力zh_TW
dc.subject力回饋zh_TW
dc.subject腳部zh_TW
dc.subject虛擬實境zh_TW
dc.subjectWearable deviceen
dc.subjectHaptic feedbacken
dc.subjectFriction forceen
dc.subjectForce feedbacken
dc.subjectOn feeten
dc.subjectVirtual realityen
dc.title於虛擬實境中提供多層次非對稱之鞋底摩擦力觸覺回饋zh_TW
dc.titleFrictShoes: Providing Multilevel Nonuniform Friction Feedback on Shoes in VRen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹力韋(Li-wei Chan),蔡欣叡(Hsin-Ruey Tsai),余能豪(Neng-Hao Yu),鄭龍磻(Lung-Pan Cheng)
dc.subject.keyword觸覺回饋,摩擦力,力回饋,腳部,虛擬實境,穿戴式裝置,zh_TW
dc.subject.keywordHaptic feedback,Friction force,Force feedback,On feet,Virtual reality,Wearable device,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202001725
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-2207202011175200.pdf
  未授權公開取用
15.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved