Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57222
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林璧鳳
dc.contributor.authorSheng-Fu Huangen
dc.contributor.author黃聖富zh_TW
dc.date.accessioned2021-06-16T06:38:22Z-
dc.date.available2019-08-04
dc.date.copyright2014-08-04
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citation陳奕綺 (2010) Lactobacillus casei Shirota對氣喘模式小鼠腸道與過敏免疫反應的影響。國立臺灣大學微生物與生化學研究所碩士論文。
賴宗揚 (2012) Lactobacillus paracasei subsp. paracasei NTU 101對氣喘模式小鼠腸道與過敏免疫反應的影響。國立臺灣大學生化科技學系碩士論文。
黃子倩 (2013) 營養素及飲食因子對腸道免疫系統的影響。國立臺灣大學生化科技學系碩士論文。
吳芝儀 (2013) 高脂飲食與奇異果對小鼠急性發炎反應的影響。國立臺灣大學生化科技學系碩士論文。
Agace WW, Persson EK. How vitamin A metabolizing dendritic cells are generated in the gut mucosa. Trends Immunol. 2012;33(1):42-8.
Ashraf R, Shah NP. Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr. 2014;54(7):938-56.
Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25(3):397-407.
Bouladoux N, Hall JA, Grainger JR, dos Santos LM, Kann MG, Nagarajan V, Verthelyi D, Belkaid Y. Regulatory role of suppressive motifs from commensal DNA. Mucosal Immunol. 2012;5(6):623-34.
Braat H, van den Brande J, van Tol E, Hommes D, Peppelenbosch M, van Deventer S. Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr. 2004;80(6):1618-25.
Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149-60.
Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011;108(38):16050-5.
Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2011;10(1):66-78.
Brummer RJM. Nutritional modulation of the ‘‘brain-gut axis’’. Scand J Nutr. 2005;49 (3):98-105
Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309.
Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011;11(2):119-30.
Camuesco D, Galvez J, Nieto A, Comalada M, Rodriguez-Cabezas ME, Concha A, Xaus J, Zarzuelo A. Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J Nutr. 2005;135(4):687-94.
Canani RB, Cirillo P, Terrin G, Cesarano L, Spagnuolo MI, De Vincenzo A, Albano F, Passariello A, De Marco G, Manguso F, Guarino A. Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ. 2007;335(7615):340.
Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666-73
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Gut Microbiota: The Neglected Endocrine Organ. Mol Endocrinol. 2014 [Epub ahead of print]
Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, Harris-White ME, Frautschy SA. Prevention of Alzheimer's disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging. 2005;26 Suppl 1:133-6.
Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735-42.
Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757-64.
Cope A1, Le Friec G, Cardone J, Kemper C. The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol. 2011;32(6):278-86.
De Palma G, Collins SM, Bercik P, Verdu EF. The Microbiota-Gut-Brain axis in gastrointestinal disorders: Stressed bugs, stressed brain or both? J Physiol. 2014;592(14):2989-2997.
Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D, Madan R, Karp CL, Pulendran B. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol. 2011;187(2):733-47.
Denomme J, Stark KD, Holub BJ. Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. J Nutr. 2005;135(2):206-11.
Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164-74.
Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720-6.
Dongarra ML, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, Ferlazzo G. Mucosal immunology and probiotics. Curr Allergy Asthma Rep. 2013;13(1):19-26.
Draper E, Reynolds CM, Canavan M, Mills KH, Loscher CE, Roche HM. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ. J Nutr Biochem. 2011;22(8):784-90.
Francavilla R, Miniello V, Magista AM, De Canio A, Bucci N, Gagliardi F, Lionetti E, Castellaneta S, Polimeno L, Peccarisi L, Indrio F, Cavallo L. A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics. 2010;126(6):e1445-52.
Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677-89.
Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140(6):859-870
Gershon MD. The enteric nervous system: a second brain. Hosp Pract (1995). 1999;34(7):31-2, 35-8, 41-2.
Gershon MD. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans Am Clin Climatol Assoc. 2012;123:268-80
Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):14-21.
Gill HS, Rutherfurd KJ, Prasad J, Gopal PK. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr. 2000;83(2):167-76.
Goodman WA, Pizarro TT. Regulatory cell populations in the intestinal mucosa. Curr Opin Gastroenterol. 2013;29(6):614-20.
Hojsak I, Snovak N, Abdović S, Szajewska H, Misak Z, Kolacek S. Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2010;29(3):312-6.
Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159-69.
Ibrahim A, Mbodji K, Hassan A, Aziz M, Boukhettala N, Coeffier M, Savoye G, Dechelotte P, Marion-Letellier R. Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin Nutr. 2011;30(5):678-87.
Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med. 2008;205(9):2139-49.
Jin W, Dong C. IL-17 cytokines in immunity and inflammation. EMI 2013;2, e60
Kalliomaki M, Salminen S, Poussa T, Isolauri E. Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119(4):1019-21.
Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321-35.
Karimi K, Kandiah N, Chau J, Bienenstock J, Forsythe P. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells. PLoS One. 2012;7(10):e47556.
Kong W, Yen JH, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav Immun. 2011;25(5):872-82.
Lambert GW, Kaye DM, Cox HS, Vaz M, Turner AG, Jennings GL, Esler MD. Regional 5-hydroxyindoleacetic acid production in humans. Life Sci. 1995;57(3):255-67.
Landskron G, De la Fuente M1, Thuwajit P, Thuwajit C, Hermoso MA. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J Immunol Res. 2014;2014:149185.
Lopez P, Gueimonde M, Margolles A, Suarez A. Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol. 2010;138(1-2):157-65.
Mann ER, Landy JD, Bernardo D, Peake ST, Hart AL, Al-Hassi HO, Knight SC. Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol Lett. 2013;150(1-2):30-40.
Marion-Letellier R, Butler M, Dechelotte P, Playford RJ, Ghosh S. Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor gamma ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells--potential for dietary modulation of peroxisome proliferator-activated receptor gamma in intestinal inflammation. Am J Clin Nutr. 2008;87(4):939-48.
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620-5.
Meister D, Ghosh S. Effect of fish oil enriched enteral diet on inflammatory bowel disease tissues in organ culture: differential effects on ulcerative colitis and Crohn's disease. World J Gastroenterol. 2005;11(47):7466-72.
Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755-64.
Monk JM, Hou TY, Turk HF, Weeks B, Wu C, McMurray DN, Chapkin RS. Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis. PLoS One. 2012;7(11):e49739.
Monk JM, Hou TY, Turk HF, McMurray DN, Chapkin RS. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells. J Nutr. 2013;143(9):1501-8.
Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev. 1997;156:145-66.
Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3(4):331-41.
Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol. 2006;176(11):6586-93.
Park Y, Moon HJ, Kim SH. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test. J Nutr Biochem. 2012;23(8):924-8.
Persson EK, Jaensson E, Agace WW. The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology. 2010;215(9-10):692-7.
Prescott SL, Wickens K, Westcott L, Jung W, Currie H, Black PN, Stanley TV, Mitchell EA, Fitzharris P, Siebers R, Wu L, Crane J. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-beta and immunoglobin A detection. Clin Exp Allergy. 2008;38(10):1606-14.
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3): 659-61.
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306-14.
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64.
Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531-62.
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-88.
Schiano TD. Treatment options for hepatic encephalopathy. Pharmacotherapy. 2010;30(5 Pt 2):16S-21S.
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163-89.
Scott CL, Aumeunier AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol. 2011;32(9):412-9.
Shu Q, Lin H, Rutherfurd KJ, Fenwick SG, Prasad J, Gopal PK, Gill HS. Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice. Microbiol Immunol. 2000;44(4):213-22.
Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988 May 27;240(4856):1169-76.
Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008;9(3):310-318.
Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394-401
Verhoeckx KC, Voortman T, Balvers MG, Hendriks HF, M Wortelboer H, Witkamp RF. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim Biophys Acta. 2011;1811(10):578-86.
Vieira AT, Teixeira MM, Martins FS. The role of probiotics and prebiotics in inducing gut immunity. Front Immunol. 2013;4:445.
Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, Tufik S, Pereira SI, Zanata SM, Ferraz AC. The role of 5-HT₁A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology. 2012;62(1):184-91.
Willemsen LE, Koetsier MA, Balvers M, Beermann C, Stahl B, van Tol EA. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr. 2008;47(4):183-91.
Willett WC. The role of dietary n-6 fatty acids in the prevention of cardiovascular disease. J Cardiovasc Med (Hagerstown). 2007;8 Suppl 1:S42-5.
Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141(3):272-82.
Yessoufou A, Ple A, Moutairou K, Hichami A, Khan NA. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells. J Lipid Res. 2009;50(12):2377-88.
Yuan X, Malek TR. Cellular and molecular determinants for the development of natural and induced regulatory T cells. Hum Immunol. 2012;73(8):773-82.
Zhao HM, Huang XY, Zuo ZQ, Pan QH, Ao MY, Zhou F, Liu HN, Liu ZY, Liu DY. Probiotics increase T regulatory cells and reduce severity of experimental colitis in mice. World J Gastroenterol. 2013;19(5):742-9.
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445-89.
Zhu KY, Mao QQ, Ip SP, Choi RC, Dong TT, Lau DT, Tsim KW. A standardized chinese herbal decoction, kai-xin-san, restores decreased levels of neurotransmitters and neurotrophic factors in the brain of chronic stress-induced depressive rats. Evid Based Complement Alternat Med. 2012;2012: article ID 149256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57222-
dc.description.abstract腸道免疫系統面對大量外來抗原的刺激,其抗原辨識能力與對後續免疫的影響,是免疫調控中相當重要的環節。許多文獻指出益生菌與含魚油營養補充劑均具有免疫調節或抗發炎的功效,因此本研究將探討這兩種飲食因子單獨或合併給予對於腸道免疫的影響。此外,腸道與腦部之間的連結也是近年最新的熱門研究議題,本研究將測定腸道與腦部的血清素含量,初步觀察益生菌與含魚油營養補充劑對血清素與腸-腦軸的可能效應。
非特異性免疫模式使用6週齡BALB/c雌鼠,隨機分為六組,以管餵方式分別給予不同劑量的益生菌與營養補充劑,分別為Ctrl組 (PBS + soybean oil)、Probio益生菌組 (1× probiotics + soybean oil)、Suppl營養補充劑組 (PBS + 1× supplement)、(P+S)-0.5x低劑量組 (0.5× probiotics + 0.5× supplement)、(P+S)-1x中劑量組 (1× probiotics + 1× supplement)及(P+S)-5x高劑量組 (5× probiotics + 5× supplement),管餵六週後犧牲;以OVA (ovalbumin)致免之特異性免疫模式,組別與第一批相同,惟高劑量組劑量調降為2×為(P+S)-2x,另增加一組未接受OVA的Ctrl-PBS作為對照,餵食期間以腹腔注射OVA致免九週後,犧牲取皮耶氏體 (PP)與腸繫膜淋巴結 (MLN)中免疫細胞進行初代細胞培養,以ELISA測定在LPS及ConA刺激下的細胞激素分泌,利用流式細胞儀分析PP、MLN及脾臟中免疫調控相關細胞次群的比例,另測定腸道與腦部組織中血清素含量。實驗結果指出,益生菌與含魚油營養補充劑能夠促進PP與MLN初代細胞分泌IL-10與TGFβ等免疫調控相關細胞激素,有利維持腸道免疫環境穩定,兩者合併給予具加乘效果;對相關細胞次群例如樹突細胞與調節型T細胞的比例,益生菌與含魚油營養補充劑則無明顯作用。另外,益生菌與含魚油營養補充劑會對腸道與腦部的血清素含量有所影響,兩者合併給予使腸道組織血清素含量增加,而益生菌則有提高腦部血清素含量的潛力,顯示此兩種飲食因子應能在腸道與腦部連結扮演某種角色。
綜合本研究結果,益生菌與含魚油營養補充劑能透過增加免疫調控相關細胞激素的分泌維持腸道免疫環境的穩定,也可能透過改變組織血清素含量而對腸-腦軸有所影響。
zh_TW
dc.description.abstractDay and night, gut immune system encounters numerous foreign antigens. As a primary site of immune response initiation, it is important for gut immune system to distinguish from self and non-self antigen and affect subsequent immune response properly. The target product of this research includes two popular dietary factor: probiotics and DHA. It has been shown that both of them have certain immunomodulatory and anti-inflammatory effects. Here we give the treatment of probiotics and nutritional supplement containing DHA, separately or combined, to clarify their effect on gut immune system. In addition, we will measure the serotonin content in both intestine and brain to elucidate the link between probiotics or DHA, serotonin and gut-brain axis preliminarily.
In non-specific immune animal model, 6 week-old female BALB/c mice were divided into several groups randomly: Ctrl, Probio, Suppl, (P+S)-0.5x, (P+S)-1 xand (P+S)-5x. Animal were sacrificed after 6-week treatment. In OVA-specific immune model, 6 week-old female BALB/c mice were divided into groups as previous. The treat dosage of (P+S)-5 xgroup was adjusted to (P-S)-2x, which received 2X dosage. Mice were immunized by OVA Intraperitoneal injection and sacrificed after 9-week sample treatment. After sacrifice, we analyzed the cytokine production of Peyer’s Patch (PP) and mesenteric lymph node (MLN) primary cell culture and the immunomodulatory cell populations in PP, MLN and splenocyte (SPL). we additionally measured the serotonin content in the tissue homogenate of intestine and brain via ELISA.
Although the percentages of regulatory cell population were not affected, combined or separate sample treatment of probiotics and nutrition supplement containing DHA can increase regulatory cytokine production, including IL-10 and TGFβ. This data implies that the product has certain immunoregulatory function. On the other hand, probiotics and nutrition supplement containing DHA also made some impacts on the serotonin content in intestine and brain. However, the precise effects and mechanisms of these two dietary components on gut-brain axis need further elucidations.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:38:22Z (GMT). No. of bitstreams: 1
ntu-103-R01b22006-1.pdf: 4214039 bytes, checksum: 4aba728a606e0d87730249334920a084 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
縮寫對照表 XI
第一章 緒論 1
第一節、 文獻回顧 1
一、 腸道免疫系統 1
(一) 構造、組成與功能 1
(二) 腸道中免疫調控相關細胞群 3
二、 飲食因子對腸道免疫功能之影響 6
(一) 益生菌與腸道免疫 6
(二) 多元不飽和脂肪酸DHA對腸道免疫功能之影響 9
三、 腸-腦軸 12
(一) 簡介 12
(二) 血清素與腸-腦軸 13
第二節、 研究動機與架構 15
一、 研究動機 15
二、 研究架構 16
第二章 綜合營養補充劑合併益生菌給予對腸道 免疫相關淋巴組織細胞激素分泌之影響 17
第一節、 前言 17
第二節、 材料與方法 18
一、 動物實驗 18
(一) 動物飼養 18
(二) 樣品配製與分組劑量 18
(三) 實驗流程 21
二、 動物犧牲及組織樣品之收集與分析 24
(一) 皮耶氏體與腸繫膜淋巴結細胞之取得與培養 24
(二) 細胞激素含量測定 25
三、 統計方法 27
第三節、 結果 28
一、 生長情形與攝食狀況 28
二、 皮耶氏體 (PP)細胞激素分泌 31
三、 腸繫膜淋巴結 (MLN)細胞激素分泌 36
第四節、 討論 41
一、 本產品對腸道免疫T細胞免疫反應傾向的影響 41
二、 本產品對腸道免疫系統發炎相關細胞激素分泌的影響 42
三、 本產品對腸道免疫系統調控機制的影響 44
(一) 益生菌給予對腸道淋巴組織Treg相關細胞激素的影響 44
(二) 含魚油營養補充劑對腸道淋巴組織Treg相關細胞激素的影響 45
(三) 樣品綜合給予後的效應 47
第三章 綜合營養補充劑合併益生菌給予對腸道免疫調控相關細胞族群之影響 48
第一節、 前言 48
第二節、 材料與方法 49
一、 動物實驗設計 49
二、 動物犧牲及組織樣品之收集與分析 49
(一) 皮耶氏體與腸繫膜淋巴結細胞之取得與培養 49
(二) 脾臟細胞之取得 49
(三) 免疫細胞表型分析 50
三、 統計方法 52
第三節、 結果 53
一、 非特異性免疫小鼠模式腸道與脾臟免疫細胞表型分析結果 53
二、 OVA特異性致免小鼠模式腸道免疫細胞表型分析結果 56
第四節、 討論 59
一、 本產品對腸道中免疫調控相關DC族群之影響 59
二、 本產品對腸道中調控型T細胞之影響 59
第四章 綜合營養補充劑合併益生菌給予對腸-腦軸的可能效應 61
第一節、 前言 61
第二節、 材料與方法 62
一、 組織樣品之收集與分析 62
(一) 腸道與腦部組織之血清素含量測定 62
二、 統計方法 63
第三節、 結果 64
一、 小腸組織血清素含量測定 64
二、 腦部組織血清素含量測定 64
第四節、 討論 66
一、 本產品對腸道中血清素的影響 66
二、 本產品對腦部血清素的影響 67
第五章 綜合討論與總結 68
第一節、 綜合討論 68
一、 動物模式 68
(一) 樣品給予與劑量 68
二、 本產品對於腸道內環境與免疫系統的影響 68
(一) 腸道菌相的改變 68
(二) 全身性免疫系統與腸道免疫系統 69
(三) 樣品綜合給予的效應 70
三、 本產品對於腸-腦軸的影響 70
第二節、 總結 71
參考文獻 72
附錄一 補充圖表 82
附錄二 流式細胞分析細胞次群圈選 83
(一) 調節型T細胞 (以MLN為例) 83
(二) 樹突細胞 (以MLN為例) 84
dc.language.isozh-TW
dc.title合併補充益生菌及含魚油之綜合營養劑對BALB/c小鼠腸道免疫與腸-腦軸的影響zh_TW
dc.titleThe combined effects of probiotics and nutritional supplement containing fish oil on gut immune response and gut-brain axisen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪永瀚,林金源,江孟燦,江伯倫
dc.subject.keyword益生菌,腸道免疫,樹突細胞,調節型T細胞,腸-腦軸,血清素,zh_TW
dc.subject.keywordprobiotics,gut immunity,dendritic cell,regulatory T cell,gut-brain axis,serotonin,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved