請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57188
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃良雄 | |
dc.contributor.author | Hsiao-Ching Chen | en |
dc.contributor.author | 陳曉慶 | zh_TW |
dc.date.accessioned | 2021-06-16T06:37:18Z | - |
dc.date.available | 2019-08-01 | |
dc.date.copyright | 2014-08-01 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-31 | |
dc.identifier.citation | [1] Batchelor, G. K., 2000, An introduction to fluid dynamics. Cambridge University press.
[2] Brown, J. W., Churchill, R. V., and Lapidus, M., 1996, Complex variables and applications, Vol. 7, New York: McGraw-Hill. [3] Chen, J. T., Hong, H. K. and Chyuan, S. W., 1994, Boundary element analysis and design in seepage problems using dual integral formulation. Finite Elements in Analysis and Design, 17(1), 1-20. [4] Chu, W. S., Liou, J. Y., and Flenniken, K. D., 1989, Numerical modeling of tide and current in Central Puget Sound: Comparison of a three‐dimensional and a depth‐averaged model, Water Resources Research, 25(4), 721-734. [5] Chuang, J. M., Gui, Q. Y., and Hsiung, C. C., 1993, Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded domain, Computer Methods in Applied Mechanics and Engineering, 105(1), 93-109. [6] Crouch, S. L., 1976, Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. International Journal for Numerical Methods in Engineering, 10(2), 301-343. [7] Currie, I. G., 2012, Fundamental mechanics of fluids, CRC Press. [8] Driscoll, T. A., and Trefethen, L. N., 2002, Schwarz-Christoffel Mapping, Vol. 8, Cambridge University Press. [9] Gaier, D., 1972, Estimates of conformal mapping near boundary, Indiana University Mathematics Journal, 21(7), 581. [10] Gaul, L., Kögl, M., and Wagner, M., 2003, Boundary element methods for engineers and scientists, Springer. [11] Gurram, S. K., Karki, K. S., and Hager, W. H., 1997, Subcritical junction flow, Journal of Hydraulic Engineering, 123(5), 447-455. [12] Harlow, F. H., and Welch, J. E., 1965, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12), 2182. [13] Hassenpflug, W. C., 1998, Branched channel free-streamlines, Computer Methods in Applied Mechanics and Engineering, 159(3), 329-354. [14] Hsu, H. J., Huang, L. H., and Hsieh, P. C, 2005, Oblique impact of water waves on thin porous walls, Journal of Engineering Mechanics, 131(7), 721-732. [15] Huang, L. H., Hsieh, P. C., and Chang, G. Z., 1993, Study on porous wave makers, Journal of Engineering Mechanics, 119(8), 1600-1614. [16] Kacimov, A. R., 2000, Note on a paper by Sinha and Odgaard ”Application of conformal mapping to diverging open channel flow', Journal of Engineering Mathematics, 37(4), 397-400. [17] Kythe, P. K., 1995, An introduction to boundary element methods Vol. 4, CRC press. [18] Lardner, R. W., and Cekirge, H. M., 1988, A new algorithm for three-dimensional tidal and storm surge computations, Applied Mathematical Modeling, 12(5), 471-481. [19] Leendertse, J. J., Alexander, R. C., and Liu, D. S., 1973, A three-dimensional model for estuaries and coastal seas: Vol. I, principles of computation, R-1417-OWRR, Rand Corporation, Santa Monica, CA, 1-21 [20] Lin, M. Y., and Huang, L. H., 2008, Velocity profiles of nonlinear shallow‐water flows, Journal of the Chinese Institute of Engineers, 31(1), 105-120. [21]Liu, S. K., and Leendertse, J. J., 1978, Multidimensional numerical modeling of estuaries and coastal seas, Advances in Hydroscience, 11, 95-164. [22] McNown, J. S., and Yih, C. S., 1953, Free-streamline analyses of transition flow and jet deflection, State University of Iowa Studies in Engineering. [23] Milne-Thomson, L. M., 1996, Theoretical hydrodynamics, Courier Dover Publications. [24] Modi, P. N., Dandekar, M. M., and Ariel, P. D., 1981, Conformal mapping for channel junction flow, Journal of the Hydraulics Division, 107(12), 1713-1733. [25] Moin, P., 2010, Fundamentals of engineering numerical analysis, Cambridge University Press. [26] Sinha, S. K., and Odgaard, A. J., 1996, Applications of conformal mapping to diverging open channel flows, Journal of Engineering Mathematics, 30(3), 355-363. [27] Snyder, M. D., and Cruse, T. A., 1975, Boundary-integral equation analysis of cracked anisotropic plates. International Journal of Fracture, 11(2), 315-328. [28] Sollero, P., and Aliabadi, M. H., 1993, Fracture mechanics analysis of anisotropic plates by the boundary element method. International Journal of Fracture, 64(4), 269-284. [29] Weber, L. J., Schumate, E. D., and Mawer, N., 2001, Experiments on flow at a 90 open-channel junction, Journal of Hydraulic Engineering, 127(5), 340-350. [30] 林孟郁、洪政暘、張正緯、黃良雄,2013,水力緩衝區銜接方法在河口水動力計算之應用,中國土木水利工程學刊,25(2),161-170。 [31] 吳仁友,1997,擬似三維海岸水動力計算模式之發展,國立臺灣大學工學院土木工程學研究所碩士論文,1-110。 [32] 洪政暘,2009,水力緩衝區之研究及其應用,國立臺灣大學工學院土木工程學研究所碩士論文,1-120。 [33] 曹之獻,2005,擬似三維感潮河口水流及質量傳輸計算,國立臺灣大學工學院土木工程學研究所碩士論文,1-193。 [34] 張正緯,2009,水平分區、垂直分層之三維地下水計算,國立臺灣大學工學院土木工程學研究所碩士論文,1-91。 [35] 張芯瑜,2012,底床上圓管管湧現象之減緩方法,國立臺灣大學工學院土木工程學研究所碩士論文,1-97。 [36] 偉盟工業股份有限公司,2009,臺北縣中港大排污染改善暨河廊環境營造工程施工前水理分析報告(第1-6 版)。 [37] 新北市政府,2011,大窠坑溪排水系統大窠坑溪排水治理計畫。 [38] 經濟部水利署,2006,水患治理特別條例。 [39] 經濟部水利署,2009,公告河川區分為中央管河川、跨省市河川及縣(市)管河川,98.4.8經授水字第09820203070號公告。 [40] 經濟部水利署,2011,「易淹水地區水患治理計畫第1 階段實施計畫」縣(市)管區排大窠坑溪排水系統規劃報告。 [41] 經濟部水利署,2012,因應氣候變遷區域淹水模式與災害管理規劃技術研究。 [42] 臺北縣政府水利局,2007,臺北縣中港大排污染改善暨河廊環境營造計畫。 [43] 錢瑨,2008,利用希伯特-黃轉換於淹水模擬之地形數據處理,國立臺灣大學工學院土木工程學研究所碩士論文,1-127。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57188 | - |
dc.description.abstract | 一般造成渠道排水不良之因素包含渠道狹窄、護岸高度不足或銜接角度不良等,部分問題可由清淤或設置抽水站解決,然而銜接角度不良者須徵收土地進行改道或可於渠道中設置隔離牆,本研究將探討匯流明渠隔離牆之規劃。
計算隔離牆位置先由二維勢能流假設,以施瓦茲─克里斯托夫轉換理論解得分隔流體之自然流線而設計,藉此發揮導流作用,將明渠匯流點延長至下游直線段,避免河水直接相互干擾或甚至使任一側水流受阻。然理論隔離牆位置尚須經過模擬測試,本研究分別以二維勢流邊界元素法以及深度平均之淺水流模式計算模擬隔離牆與流場作用關係,另研究邊界元素法之退化邊界問題。 現實情況中,匯流明渠隔離牆於中港大排與貴子坑溪交會處已有設置,本研究將取其作為研究案例,模擬分析理論隔離牆於真實渠道中受力情形,並與既有隔離牆比較,統整研究結果,探討隔離牆最佳規劃方案並針對原隔離牆提出改善辦法。最後透過多孔介質材料特性建造具舒緩壓力作用之隔離牆,成果良好,希冀對日後河川治理工程有所幫助。 | zh_TW |
dc.description.abstract | The cause of open channel flooding includes contraction, insufficient height of embankment, inappropriate merged angle, etc. Among the above circumstance, some of the problems can be solved by cleanout or pumping, but the most complicated problem is inappropriate merged angle, it will face land expropriation for river changing. Another choice is to construct a dividing wall in the channel which is the main issue of the research.
The design of dividing wall for merged flow can extend the intersection point to downstream, relative uniform flow, avoiding disturbing each side water. Planning dividing wall can follow the steps below: First, use Schwarz-Christoffel transformation to find analytical solution of dividing wall position. Second, calculate the pressure of dividing wall by BEM of 2D potential problems and solve degenerate boundary problems. Or, simulate the action between fluid and wall by depth-averaged sallow water model. For the purpose of combining the research with practice, the research will discuss the case of confluence between Zhonggang chnnel and Quizikeng river. As a sequence describe before, the optimal dividing wall can be found. Furthermore, the study successfully propose a way to improve present dividing wall by using porous material, having the property of dissipating pressure. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:37:18Z (GMT). No. of bitstreams: 1 ntu-103-R01521301-1.pdf: 4583514 bytes, checksum: b71a806ad312ec48489324f595776950 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 摘要 II
ABSTRACT III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 2 1.3 研究方法及步驟 3 1.4 章節介紹 4 第二章 明渠流場研究方法 7 2.1 施瓦茲─克里斯托夫轉換理論 7 2.1.1 理論與推導 8 2.1.2 二維勢能流應用 10 2.2 二維勢流邊界元素法 11 2.2.1 二維拉普拉斯方程式問題 12 2.2.2 次領域邊界元素法 16 2.2.3 方法檢驗 18 2.3 水深平均之淺水流模式 20 2.3.1 控制方程式與邊界條件 20 2.3.2 數值方法 23 2.3.3 模式應用案例舉證 25 第三章 明渠匯流隔離牆設置與分析 27 3.1 二維明渠隔離牆位置解析 27 3.1.1 以施瓦茲─克里斯多夫轉換理論計算隔離牆位置 28 3.1.2 自由流線問題 35 3.2 二維明渠隔離牆壓力分析 35 3.2.1 以二維勢流邊界元素法計算 35 3.2.2 隔離牆最佳位置 38 3.3 結果與討論 40 第四章 明渠匯流隔離牆研究案例─以中港大排為例 41 4.1 模擬基地概述與歷史工程計畫 41 4.2 案例模擬 48 4.2.1 隔離牆現地位置與理論設計 48 4.2.2 以二維勢流邊界元素法分析隔離牆壓力 53 4.2.3 以二深度平均之淺水流模試模擬隔離牆壓力 60 4.3 改善方案 71 4.3.1 多孔介質材料於工程之應用 71 4.3.2 以二維勢流邊界元素法分析多孔介質隔離牆壓力 72 4.3.3 以深度平均之淺水流模式模擬多孔介質隔離牆壓力 77 4.4 結果與討論 79 第五章 結論與建議 81 5.1 結論 81 5.2 建議 82 參考文獻 85 附錄A 淺水流模式之深度平均方程式推導 90 | |
dc.language.iso | zh-TW | |
dc.title | 明渠匯流隔離牆之研究 | zh_TW |
dc.title | The study of the dividing wall for a merged flow of two open channels | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊錦釧,張國強,徐浩仁 | |
dc.subject.keyword | 隔離牆,施瓦茲─克里斯托夫轉換理論,二維勢流邊界元素法,水深平均之淺水流模式,多孔介質, | zh_TW |
dc.subject.keyword | dividing wall,Schwarz-Christoffel transformation,BEM of 2D potential problems,depth-averaged sallow water model,porous media, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。