請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.author | Shi-Yao Hung | en |
| dc.contributor.author | 洪士堯 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:36:58Z | - |
| dc.date.available | 2017-08-04 | |
| dc.date.copyright | 2014-08-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-31 | |
| dc.identifier.citation | [1] Chao, C. Y., Ashkenazi, S., Huang, S. W., O'Donnell, M., & Guo, L. J. (2007). High-frequency ultrasound sensors using polymer microring resonators.Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,54(5), 957-965.
[2] Huang, S. W., Chen, S. L., Ling, T., Maxwell, A., O’Donnell, M., Guo, L. J., & Ashkenazi, S. (2008). Low-noise wideband ultrasound detection using polymer microring resonators. Applied physics letters, 92(19), 193509. [3] Buma, T., Spisar, M., & O’donnell, M. (2001). High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Applied Physics Letters, 79(4), 548-550. [4] Fiering, J. O., Hultman, P., Lee, W., Light, E. D., & Smith, S. W. (2000). High-density flexible interconnect for two-dimensional ultrasound arrays. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 47(3), 764-770. [5] Ashkenazi, S., Chao, C. Y., Guo, L. J., & O’donnell, M. (2004). Ultrasound detection using polymer microring optical resonator. Applied physics letters,85(22), 5418-5420. [6] Hamilton, J. D., Buma, T., Spisar, M., & O'Donnell, M. (2000). High frequency optoacoustic arrays using etalon detection. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 47(1), 160-169. [7] Ashkenazi, S., Hou, Y., Buma, T., & O’Donnell, M. (2005). Optoacoustic imaging using thin polymer etalon. Applied Physics Letters, 86(13), 134102. [8] Laufer, J. G., Beard, P. C., & Mills, T. N. (2002). Comparison of the photothermal sensitivity of an interferometric optical fiber probe with pulsed photothermal radiometry. Review of scientific instruments, 73(9), 3345-3352. [9] Wilkens, V. (2003). Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz. The Journal of the Acoustical Society of America, 113(3), 1431-1438. [19] Ritter, T. A., Shrout, T. R., Tutwiler, R., & Shung, K. K. (2002). A 30-MHz piezo-composite ultrasound array for medical imaging applications. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 49(2), 217-230. [11] Kruger, R. A., Kiser Jr, W. L., Reinecke, D. R., & Kruger, G. A. (2003). Thermoacoustic computed tomography using a conventional linear transducer array. Medical physics, 30(5), 856-860. [12] http://uw.physics.wisc.edu/~timbie/P325/Spike_photoacoustic_effect.pdf [13] Beard, P. (2011). Biomedical photoacoustic imaging. Interface focus, 1(4), 602-631. [14] Tam, A. C. (1986). Applications of photoacoustic sensing techniques. Reviews of Modern Physics, 58(2), 381. [15] Gregoire, G., Tournat, V., Mounier, D., & Gusev, V. E. (2008). Nonlinear photothermal and photoacoustic processes for crack detection. The European Physical Journal Special Topics, 153(1), 313-315. [16] Kruger, R. A., Liu, P., & Appledorn, C. R. (1995). Photoacoustic ultrasound (PAUS)—reconstruction tomography. Medical physics, 22(10), 1605-1609. [17] Esenaliev, R. O., Karabutov, A. A., Tittel, F. K., Fornage, B. D., Thomsen, S. L., Stelling, C., & Oraevsky, A. A. (1997, August). Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging. In BiOS'97, Part of Photonics West (pp. 71-82). International Society for Optics and Photonics. [18] Hoelen, C. G. A., De Mul, F. F. M., Pongers, R., & Dekker, A. (1998). Three-dimensional photoacoustic imaging of blood vessels in tissue. Optics letters,23(8), 648-650. [19] Oraevsky, A. A., Andreev, V. A., Karabutov, A. A., Fleming, R. D., Gatalica, Z., Singh, H., & Esenaliev, R. O. (1999, July). Laser optoacoustic imaging of the breast: detection of cancer angiogenesis. In BiOS'99 International Biomedical Optics Symposium (pp. 352-363). International Society for Optics and Photonics. [20] Ku, G., & Wang, L. V. (2000). Scanning thermoacoustic tomography in biological tissue. Medical physics, 27(5), 1195-1202. [21] Beard, P. C. (2002, June). Photoacoustic imaging of blood vessel equivalent phantoms. In International Symposium on Biomedical Optics (pp. 54-62). International Society for Optics and Photonics. [22] Esenaliev, R. O., Petrov, Y. Y., Hartrumpf, O., Deyo, D. J., & Prough, D. S. (2004). Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique. Applied optics, 43(17), 3401-3407. [23] Esenaliev, R. O., Larina, I. V., Larin, K. V., Deyo, D. J., Motamedi, M., & Prough, D. S. (2002). Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Applied Optics, 41(22), 4722-4731. [24] Wang, L. V. (2009). Multiscale photoacoustic microscopy and computed tomography. Nature photonics, 3(9), 503-509. [25] Oh, J. T., Stoica, G., Wang, L. V., Li, M. L., Zhang, H. F., & Maslov, K. (2006). Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. Journal of biomedical optics, 11(3), 034032-034032. [26] de La Zerda, A., Paulus, Y. M., Teed, R., Bodapati, S., Dollberg, Y., Khuri-Yakub, B. T., ... & Gambhir, S. S. (2010). Photoacoustic ocular imaging.Optics letters, 35(3), 270-272. [27] Yang, J. M., Maslov, K., Yang, H. C., Zhou, Q., Shung, K. K., & Wang, L. V. (2009). Photoacoustic endoscopy. Optics letters, 34(10), 1591-1593. [28] Sethuraman, S., Aglyamov, S. R., Amirian, J. H., Smalling, R. W., & Emelianov, S. Y. (2007). Intravascular photoacoustic imaging using an IVUS imaging catheter. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 54(5), 978-986. [29] Hsieh, B. Y., Chen, S. L., Ling, T., Guo, L. J., & Li, P. C. (2012). All-optical scanhead for ultrasound and photoacoustic dual-modality imaging. Optics express, 20(2), 1588-1596. [30] Nuster, R., Schmitner, N., Wurzinger, G., Gratt, S., Salvenmoser, W., Meyer, D., & Paltauf, G. (2013). Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection. Journal of biophotonics, 6(6‐7), 549-559. [31] Diebold, G. J., Sun, T., & Khan, M. I. (1991). Photoacoustic monopole radiation in one, two, and three dimensions. Physical review letters, 67(24), 3384. [32] Tsou, J. K., Liu, J., Barakat, A. I., & Insana, M. F. (2008). Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk. Ultrasound in medicine & biology, 34(6), 963-972. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57176 | - |
| dc.description.abstract | 超音波與光聲多模態影像在生物醫學影像上已有相當多的研究,其能有效率的將兩種不同性質的影像結合。然而一如許多其他種類的多模態影像,超音波/光聲多模態影像因其個別影像的能量來源不同,超音波與光聲信號必須分開產生,造成影像對位以及時間上的排列等問題,進而限制了某些特定的應用。在本研究中我們提出一種能在單發雷射內同時產生超音波以及光聲影像的方法,此方法利用吸收通過光聲多層膜的雷射光來產生超音波形成超音波影像,並使用同一發雷射所剩餘的能量照射組織產生光聲影像,如此一來即能在單發雷射內同時產生超音波及光聲影像,解決傳統超音波與光聲多模態影像之影像對位以及時間上的排列問題。在之前的研究中也有利用過類似的架構,不過之前的研究是利用單層膜來產生光產生超音波信號,而此信號具有相當寬頻的特性,使得在頻域無法上分離接收回來的較低頻光聲以及光產生之超音波信號,因此在擷取超音波/光聲多模態影像時,超音波與光聲信號依然必須分開產生。本研究所使用的光學多層膜能產生較窄頻的超音波信號,因此在頻譜上能與低頻的光聲信號進行分離。此光學吸收體中有多層的光吸收層與光穿透層,當改變光吸收層之間的距離以及吸收係數時,即可調整信號產生之頻率特性。本研究在實作上成功的利用光聲多層膜產生了中心頻率14~28 MHz不等的超音波訊號,並且相較於單層膜產生之相對頻寬約100%的超音波信號,依此方法產生的高頻窄頻光學超音波信號相對頻寬約為30%,能避開生物組織之光聲信號約10MHz的低頻頻段,因此在影像處理上能利用部分頻帶法以提高超音波與光聲影像之對比。除此之外本研究在架構上進一步的搭配聚合物微環之光學式超音波接收器,形成全光學式超音波/光聲探頭架構。在實驗架構上,我們使用此超音波/光聲探頭架構截取囊腫狀仿體以及薄膜仿體之超音波回波以及光聲信號以測試此架構之可行性,並且利用合成孔徑演算法來提高影像的橫向解析度以及訊雜比。 | zh_TW |
| dc.description.abstract | Multimodality ultrasound (US) and photoacoustic (PA) imaging has received wide research attention for biomedical research. It is an efficient way to combine two complementary imaging mechanisms within one single system. Nevertheless, like many other multimodality imaging systems, generally different energy sources and detectors need to be used. Thus, image registration and temporal alignment become a critical issue limiting the imaging performance in certain applications. In this study, we propose a new imaging method that requires only a single laser pulse to concurrently perform US and PA imaging. Specifically, we propose a thin film with multiple optically absorbing layers which is also partially transparent to light. With this multilayer thin film, the transmission light can be used to perform PA imaging, whereas the absorbed light energy can generate US for US imaging. As the PA and US images are created by the same laser pulse, the image registration and temporal alignment problems practically no longer exist. In our previous study, a similar approach was taken but with a single layer film. Because of the broadband nature of the generated US, the US signal and the PA signal are spectrally overlapped, thus making it difficult to be separated. By using the multilayer film proposed in the current study, the generated US signal has a relatively narrower bandwidth and thus it is spectrally separable from the PA signal. Characteristics of the generated US signal can also be tuned by adjusting the optical absorption coefficient of light-absorbing layers as well as thickness of the layers. In our designs, the US signals generated by the multilayer films typically have the center frequency ranging from 14 to 28MHz. The bandwidth is typically around 30%, compared to the 100% bandwidth from the single layer films. The PA signal, on the other hand, generally is most sensitive around 10MHz or lower for biological tissues. Thus, the US signal and the PA signal can be separated using a filter at the receiver end. In addition, when using a microring to detect both the US signal and the PA signal, the US and PA imaging system becomes all optical. A thin film phantom and a cyst-like phantom were used to test imaging performance of this approach. The feasibility is demonstrated. The lateral resolution and SNR can be further improved by applying the synthetic focusing technique. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:36:58Z (GMT). No. of bitstreams: 1 ntu-103-R01945008-1.pdf: 3555975 bytes, checksum: b39c2474f20ba93479708c5746b10d56 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES XI Chapter 1 緒論 1 1.1 研究動機 1 1.2 光產生超音波 2 1.3 光學式超音波探頭 3 1.4 光聲效應簡介 6 1.4.1 光聲效應原理 6 1.4.2 光聲效應目前之相關研究領域 8 1.5 超音波/光聲多模態影像 9 1.6 論文架構 12 Chapter 2 光聲多層膜製作與模擬 13 2.1 光聲多層膜製作 13 2.1.1 光吸收層 13 2.1.2 光穿透層 14 2.1.3 光聲多層膜製作過程 15 2.2 光聲多層膜信號模擬 17 2.2.1 單層膜光聲信號 19 2.2.2 穿透層厚度模擬 22 2.2.3 吸收層層數模擬 23 2.2.4 吸收層吸收係數模擬 24 2.2.5 總結 27 Chapter 3 光聲多層膜 28 3.1 實驗架構 28 3.2 光聲多層膜在不同參數下之結果 29 3.2.1 光聲多層膜與單層膜之關係 29 3.2.2 光吸收層層數對超音波信號之影響 34 3.2.3 光吸收層吸收係數對超音波信號之影響 36 3.2.4 光穿透透層厚度對超音波信號之影響 38 3.3 高頻窄頻之光聲多層膜 41 Chapter 4 單雷射脈衝光聲/超音波影像系統 43 4.1 實驗架構介紹 43 4.2 信號處理 46 4.2.1 頻帶分離法 46 4.2.2 合成孔徑演算法 47 4.3 影像系統測量結果 48 4.3.1 線仿體量測 52 4.3.2 囊腫狀仿體量測 53 Chapter 5 全光學式單雷射脈衝光聲/超音波影像系統 58 5.1 實驗架構介紹 58 5.2 影像量測結果 62 5.2.1 囊腫狀仿體超音波信號量測 62 5.2.2 薄膜仿體光聲/超音波信號量測 63 5.2.3 討論 65 Chapter 6 結論與未來展望 66 6.1 結論 66 6.2 未來工作與展望 66 REFERENCES 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光產生超音波 | zh_TW |
| dc.subject | 光聲影像 | zh_TW |
| dc.subject | 高頻超音波 | zh_TW |
| dc.subject | 超音波/光聲多模態影像 | zh_TW |
| dc.subject | 光學式接收超音波 | zh_TW |
| dc.subject | Optical generation of ultrasound | en |
| dc.subject | Photoacoustic imaging | en |
| dc.subject | High frequency ultrasound | en |
| dc.subject | Optical detection of ultrasound | en |
| dc.subject | Ultrasound/Photoacoustic multimodality imaging | en |
| dc.title | 光聲多層膜及其於全學式超音波/光聲影像探頭之應用 | zh_TW |
| dc.title | Multilayer films and their applications in all optical ultrasound/photoacoustic imaging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李夢麟,劉建宏,宋孔彬,陳松良 | |
| dc.subject.keyword | 光產生超音波,光聲影像,高頻超音波,光學式接收超音波,超音波/光聲多模態影像, | zh_TW |
| dc.subject.keyword | Optical generation of ultrasound,Photoacoustic imaging,High frequency ultrasound,Optical detection of ultrasound,Ultrasound/Photoacoustic multimodality imaging, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
