Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57175
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑩英
dc.contributor.authorYuan Shyong Ooien
dc.contributor.author黃垣熊zh_TW
dc.date.accessioned2021-06-16T06:36:56Z-
dc.date.available2014-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-07-31
dc.identifier.citation[All] W.K. Allard, On the first variation of a varifold, Ann.of Math.(2) 95 (1972) no. 3, 417--491.
[Alm] F.J. Almgren, The theory of varifolds, Mimeographed notes, Princeton, 1965.
[CD]T.H. Colding and C. De Lellis, The min-max construction of minimal surfaces, Surveys in differential geometry, Vol. 8, Lectures on Geometry and Topology.
[CP] C. De Lellis and F. Pellandini, Genus bounds for minimal surfaces arising from min-max constructions, J.Reine Angew. Math. 644(2010), 47--99.
[CM] T.H. Colding and W.P. Minicozzi. A course in minimal surfaces. Vol. 121. American Mathematical Soc., (2011).
[J]J. Jost, Embedded minimal surfaces in manifolds diffeomorphic to the three-dimensional ball or sphere, J. Differential Geom. 30(1989), no. 2, 555--577.
[MSY]W. Meeks III, L. Simon, and S.T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive ricci curvature Ann.of Math.(2) 116 (1982) no. 3, 621--659.
[MN] F. C. Marques and A. Neves, Rigidity of min-max minimal spheres in three-manifolds, Duke Mathematical Journal 161 (2012), no. 14,2725-2752.
[MN2]F. C. Marques and A. Neves, Min-Max theory and the Willmore conjecture, Annals of Mathematics 179 (2014): 683-782.
[MN3]F. C. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci Curvature, arXiv:1311.6501, (2013)
[M]J. W. Milnor, Morse theory (No.51), Princeton university press
[P]J.T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds. Princeton University Press, Princeton, N.J.;University of Tokyo Press, Tokyo (1981).[PR1]J.T. Pitts and J.H. Rubinstein, Existence of minimal surfaces of bounded topological type in three--manifolds, Miniconference on Geometry and Partial Differential Equations, Proceedings of the Centre for Mathematical Analysis,Australian National University (1985).
[PR2]J.T. Pitts and J.H. Rubinstein, Application of minmax to minimal surfaces and the topology of 3-manifolds, Miniconference on Geometry and Partial Differential Equations, Proceedings of the Centre for Mathematical Analysis, Australian National University (1986).
[Si]L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis,
Australian National University (1983).
[Sm]F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, supervisor L. Simon, University of Melbourne (1982).
[SS]R. Schoen, L.Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34(1981), 741--797
[U]F. Urbano, Second variation of one-sided complete minimal surfaces, Rev. Mat. Iberoam. 29(2013), no. 2, 479--494
[MPT]Jose M.Manzano, Julia Plehnert, Francisco Torralbo, Compact embedded minimal surfaces in S^2 x S^1,
arXiv:1311.2500, (2013)
[XZ]X.Zhou, Min-max minimal hypersurface in (M^{n+ 1}, g) with Ric_g> 0 and 2leq nleq 6, arXiv preprint arXiv:1210.2112 (2012).
[XZ2]X.Zhou, On the existence of min-max minimal surface of genus ggeq
2, arXiv preprint arXiv:1111.6206 (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57175-
dc.description.abstract本論文將討論如何通過極小極大方法來構造極小曲面。我們主要討論在這方法之下,極小曲面的存在性問題。
這方法有很多不同的版本,我們主要的參考文獻來自
Colding 和 De Lellis 的 The min-max construction of minimal
surfaces[CD]。我們也將會在第一章節提到其他造極小曲面的極小極大方法。
zh_TW
dc.description.abstractIn this thesis, we shall survey the construction of minimal surface in closed three-manifold via min-max construction.
Our focus will be on the existence of the min-max stationary varifold via this construction. There are many different type min-max construction. Our main reference is The min-max construction of minimal surfaces [CD] by Colding and De Lellis in which they apply min-max method in the isotopy class of generalized family of surfaces. We shall also mention some other min-max method in the introduction part.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:36:56Z (GMT). No. of bitstreams: 1
ntu-103-R00221030-1.pdf: 597520 bytes, checksum: b31fe63e07c7c31062fd734dfc1dc238 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
1. Introduction 1
2. Preliminaries 4
3. Existence of Stationary Min-max Sequence 8
4. Existence of Almost Minimizing Min-max Sequence 14
5. Specific Case for Min-max Method on S^2 x S^1 22
6. Bibliography 24
dc.language.isoen
dc.subject極小極大構造法zh_TW
dc.subject極小曲面zh_TW
dc.subjectmin-max constructionen
dc.subjectminimal surfacesen
dc.title極小曲面的極小極大構造法zh_TW
dc.titleMin-max construction of minimal surfaceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王慕道,崔茂培,陳泊寧,蔡忠潤
dc.subject.keyword極小極大構造法,極小曲面,zh_TW
dc.subject.keywordmin-max construction,minimal surfaces,en
dc.relation.page26
dc.rights.note有償授權
dc.date.accepted2014-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
583.52 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved