Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57159
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 廖洺漢(Ming-Han Liao) | |
dc.contributor.author | Shih-Yu Huang | en |
dc.contributor.author | 黃仕宇 | zh_TW |
dc.date.accessioned | 2021-06-16T06:36:29Z | - |
dc.date.available | 2019-07-22 | |
dc.date.copyright | 2014-08-13 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-01 | |
dc.identifier.citation | [1] Nagaev, E. L. (1996). “Lanthanum manganites and other giant-magnetoresistance magnetic conductors”. Soviet Physics Uspekhi (in Russian (free download)/English) 166(8): 833–858. doi:10.3367/UFNr.0166.199608b.0833
[2] Rao, C. N. R. and Raveau, B., ed. (1998). Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides. World Scientific Publishing Co. p. 2. ISBN 978-981-02-3276-4 [3] Keating, P. N. “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure ”. Physical Review 145.2 (1966): 637. [4] B.D.Cullity, Element of X-ray Diffration, Addison- Wesley(1978). [5] 施敏、張俊彥,半導體元件物理與製作技術,高立圖書公司,(1996). [6] I. Zubel and M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solution”, Sens. Actuators A. 101, 255 (2002). [7] P. J. Holmes, The Electrochemistry of Semiconductors, Academic press, 329, (1962) [8] W. Kern, “Chemical etching of silicon, germanium, gallium-arsenide and gallium phosphide”, RCA Review. 39, 278 (1978). [9] P. Allongue, V. Costa-Kieling and H. Gerischer, “Etching of Silicon in NaOH Solutions”, J. Electrochem. Soc. 140, 1018 (1993). [10] I. Zubel, “Silicon anisotropic etching in alkaline solution Ⅲ: On the possibility of spatial strutures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions” ,Sens. Actuators A. 84, 116 (2000). [11] I. Zubel, I. Barycka, K. Kotowska, and M. Kramkowska, “Silicon anisotropic etching in alkaline solution IV: The effect of organic and inorganic agents on silicon anisotropic etching process”, Sens. Actuators A. 87, 163 (2001). [12] I. Zubel, M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions”, Sens. Actuators A. 93, 183 (2001). [13] H. Seidel, L. Csepregi, A. Heuberger, H. BaumgSrtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, J. Electrochem. Soc., Vol. 137, No. 11, November 1990. [14] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part I. Orientation dependence and behavior of passivation layer”, J.Electrochem. Soc. 137, 3612 (1990). [15] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisoropic etching of crystalline silicon in alkaline solution-part II. Influence of dopants”, J. Electrochem. Soc. 137, 3626 (1990). [16] D. B. Lee, “Anisotropic etching of silicon”, J. Appl. Phys. 40, 4569 (1969). [17] P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc. 140, 1080 (1993). [18] T. Baum, and D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications”, J. Micromech. Microeng. 7, 338 (1997). [19] E. D. Palik, O. J. Glembocki, I. Heard, “Etching roughness for (100) silicon surface in aqueous KOH”, J. Appl. Phys. 70, 3291 (1991). [20] S. S. Tan, M. L. Reed, H. Han, and R. Boudreau, “Mechanisms of etch hillock formation”, J. M E M S. 5, 66 (1996). [21] Y. K. Bhatnagar and A. Nathan, “On pyramidal protrusions in anisotropic etching of (100) silicon”, Sens. Actuators A. 36, 233 (1993). [22] W. K. Choi, J. T. L. Thong, P. Luo, C. M. Tan, T. H. Chua, and Y.Bai, “Characterisation of pyramid formation arising from the TMAH etching of silicon”,Sens. Actuators A. 71,238 (1998). [23] L. M. Landsberger, S. Naseh, M. Kahrizi,and M. Paranjape, “On hillocks generated during anisotropic etching of Si in TMAH”, J. Microelectromech. Syst. 5, 106 (1996). [24] Q. Micheal and S.Julian, “Aemiconductor Manufacturing Technology”, Prentice Hall, 443. [25] S. C. Chen, T. H. Sun, C. L. Shen, W. C. Peng, C. D. Chen, P.C.Kuo, and J. R. Chen, “Microstructure and Magnetic Properties of In-Situ Deposited In-Situ FePt Films on MgO(200) Films of Varying Thicknesses”, IEEE Transactions on Magnetics, Vol. 47, No. 3, Mar, 2011. [26] Mitsuhiro Shikida, Kazuo Sato, Kenji Tokoro, Daisuke Uchikawa “Differences in anisotropic etching properties of KOH and TMAH solutions”, Sensors and Actuators A: Physical, Vol. 80, Issue 2, pp. 179-188, March, 2000 [27] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 1994. [28] Irena Zubel and Malgorzata Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions”, Sensors and Actuators A: Physical , Vol. 93, Issue 2, pp. 138-147, Sep, 2001. [29] Y. L. Li, H.Y. Yu, J. S. L, S. M. Wong, H.L. Zhu, N. Singh, Patrick G.Q. Lo, D.L. Kwong, “A Novel Low Aspect-Ratio Si Nano-Hemisphere Surface Texturing Scheme for Ultrathin Film Solar Cells”, IEEE Electron Devices Meeting, ISSN 0163-1918, pp. 2.6.1-2.6.4, Dec, 2011. [30] P. Spinelli, M.A. Verschuuren and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators”, Nature Communications 3, Article number: 692, February, 2012. [31] Yali Li, HongYu Yu, Junshuai Li, She-Mein Wong, Jian Wang, Xinpeng Wang, Navab Singh, Patrick Guo-Qiang Lo, and Dim-Lee Kwong, “NOVEL LOW ASPECT-RATIO SI NANO-HEMISPHERE ARRAY SURFACE TEXTURE APPLICATION TO ULTRATHIN FILM SOLAR CELLS”, IEEE Photovoltaic Specialists Conference , 2011 37th, pp. 13-16, June. 2011. [32] Yali Li , HongYu Yu , Junshuai Li , She-Mein Wong , Xiao Wei Sun , Xianglin Li , Chuanwei Cheng , Hong Jin Fan , Jian Wang , Navab Singh , Patrick Guo-Qiang Lo , and Dim-Lee Kwong, “Novel Silicon Nanohemisphere-Array Solar Cells with Enhanced Performance”, Vol. 7, Issue 22, pp. 3138–3143, Nove. 2011. [33] Jack Sheng Kee, Mi Kyoung Park, Chee Chung Wong, Linus Tzu-Hsiang Kao, Mingbin Yu, and Guo Qiang Lo, “ Polydimethylsiloxane Nano-Hemispheres Array for Color Separation”, IEEE Photonics Technology Letters, Vol. 24, Issue 15, pp. 1334-1336, Aug. 2012. [34] D. L. Kendall, “On etching very narrow grooves in silicon”, Applied Physics Letters, Vol. 26, pp. 195-198, 1975. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57159 | - |
dc.description.abstract | 本論文用電漿輔助化學氣相沈積(Plasmaenhanced chemical vapor deposition)、光微影技術(Photolithography)、電感耦合式乾蝕刻(inductivelycoupled plasma reactive ion etching)、濕蝕刻(wet etching)製作出三維立體結構矽基板,以達到平面化3D立體功能。利用化學氣相沉積1um的二氧化矽作為矽基板的硬遮罩(Hard Mask),再利用曝光微影技術和電感耦合式乾蝕刻將所需圖形定義在(100)、(110)、(111)方向的Si基板上,再利用不同濃度的KOH和IPA蝕刻液以70°C濕蝕刻矽基板,並探討不同濃度的蝕刻溶液對不同晶向矽基板,其所產生斜面的平坦化程度的關係,從實驗結果得知以KOH(5M)和IPA(5M)蝕刻液蝕刻(100)晶向的Si能達到研究所需的平坦化三維斜面結構。平坦化三維斜面結構有利於將來在此斜面沉積不同材料層或放置各種元件時,達到更好效能的目的。 | zh_TW |
dc.description.abstract | In this paper, we usedplasma enhanced chemical vapor deposition, Photolithography, inductively coupled plasma reactive ion etching, wet etching to produce 3D structure of the Si substrate to achieve the 3D planarization function. Deposited SiO2 1um on Si substrate as a hard maskby plasma enhanced chemical vapor deposition, and then use Photolithography and inductively coupled plasma reactive ion etching to define the desired pattern on (100), (110),(111) Si substrate, and then use different concentrations of KOH, IPA etching solution at70 ° C wet etching Si substrate.Explore different solutions for different etching Si substrate to produce the degree of flattening the slope.From the experimental results with KOH (5M) and IPA (5M) etching solution etch (100) crystal orientation of Si.3D inclined planar configuration to achieve the required study.
3D flat slope structure is conducive to the future, when this slope sedimentary layers of different materials or place the various components, to achieve the purpose of better performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:36:29Z (GMT). No. of bitstreams: 1 ntu-103-R01522625-1.pdf: 3792455 bytes, checksum: f392e234b7ace0b3acfc4ac4d25d8229 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 第一章緒論 1 1.1 前言 1 1.2 論文架構 2 第二章文獻回顧與理論基礎 3 2.1 矽結構特性 3 2.1.1 矽簡介 3 2.1.2 矽結構 4 2.2 儀器設備原理 5 2.2.1 矽濕蝕刻 5 2.2.2 乾蝕刻 9 2.2.3 濕蝕刻緩衝液IPA 13 2.2.4 真空理論 14 2.2.5 薄膜成長機制 14 2.2.6 曝光機 17 第三章實驗流程與步驟說明 20 3.1 實驗流程設計 20 3.2 晶圓清洗 22 3.3 薄膜製備 25 3.4 曝光微影 26 3.5 乾蝕刻 29 3.6 KOH濕蝕刻 30 第四章各種結構實驗方法與結果討論 30 4.1 V形結構 30 4.1.1 不同濃度IPA / KOH / H2O蝕刻液進行蝕刻 32 4.1.2 對不同晶向的Si進行蝕刻 38 4.1.3 使用超音波振盪蝕刻 39 4.1.4 將光罩圖形對準Si晶向進行曝光微影。 42 4.2 圓頂結構 45 4.3 深溝結構 47 第五章 結論 49 參考文獻 51 | |
dc.language.iso | zh-TW | |
dc.title | 3D磁性感測器基板研究 | zh_TW |
dc.title | Study the 3D substrate of magnetic sensor | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏鴻(Min-Hung Lee),李昌駿(Chang-Chun Lee) | |
dc.subject.keyword | 電漿輔助化學氣相沈積,光微影技術,電感耦合式乾蝕刻,濕蝕刻,硬遮罩, | zh_TW |
dc.subject.keyword | PECVD,Photolithography,ICP RIE,wet etching,hard mask, | en |
dc.relation.page | 54 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
Appears in Collections: | 機械工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 3.7 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.