請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57153
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏嗣鈞(Hsu-Chun Yen) | |
dc.contributor.author | Hsiang-En Ding | en |
dc.contributor.author | 丁祥恩 | zh_TW |
dc.date.accessioned | 2021-06-16T06:36:19Z | - |
dc.date.available | 2019-08-04 | |
dc.date.copyright | 2014-08-04 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-01 | |
dc.identifier.citation | [1] P. Mistry, P. Maes, and L. Chang, “WUW – wear ur world – a wearable gestural interface,” Proceedings of CHI Extended Abstracts on Human in Computing Systems, pp.4111-4116, 2009.
[2] P. Mistry and P. Maes, “SixthSense – a wearable gestural interface,” Proceedings of SIGGRAPH Asia 2009, 2009. [3] P.Grag, N.Aggarwal, and S. Sofat, “Vision based Hand Gesture Recognition,” Proceedings of World academy of science, engineering and technology, pp. 973-977, 2009. [4] W. Westerman, J. G. Elias, and A. Hedge, “Multi-touch: a new Tactile 2-D Gesture Interface for Human-Computer Interaction, “ Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, vol. 1, pp. 632-636, 2001. [5] S. Mitra and T. Acharya, “Gesture Recognition: a survey,” Proceedings of IEEE Transactions on Systems, Man, and Cybernetics – Part C, vol. 37, no. 3, pp. 311-324, 2007. [6] T. Starner and A. Pentland, “Real Time American Sign Language Recognition from Viedo using Hidden Markov Models,” MIT Media Lab, Cambridge, Massachusetts, Tech. Rep. 375, 1995. [7] R. H. Liang and M. Ouhyoung, “A Real-time Continuous Gesture Recognition System for Sign Language,” Proceedings of Int’l Conf. Automatic Face and Gesture Recognition, pp. 558-565, 1998. [8] L. Gallo, A. P. Placitelli, M. Ciampi, “Controller-Free Exploration of Medical Image Data: Experiencing the Kinect,” Proceedings of 24th International Symposium on Computer-based Medical systems, pp. 1-6, 2011. [9] S. Loehmann, M. Knobel, M. Lamara, A. Butz, “Culturally Independent Gestures for In-Car Interactions,” Proceedings of the 14th IFIP TC 13 Conference on Human-Computer Interaction, pp. 538-545, 2013. [10] H. Zhou and T. S. Huang, “ Tracking Articulated Hand Motion with Eigen Dynamics Analysis,” Proceedings of International Conference on Computer Vision, vol. 2, pp.1102-1109, 2003. [11] M. Black and A. Jepson, “Eigen Tracking: Robust Matching and Tracking of Articulated using a View-based Representation,” Proceedings of European Conference on Computer Vision, pp. 329-342, 1996. [12] P. Viola and M. Jones, “Robust Real-time Object Detection,” Cambridge Res. Lab, Cambridge, Massachusetts, Tech. Rep. CRL2001/01, pp. 1-24, 2001. [13] A. L. C. Barczak and F. Dadgostar, “Real-time Hand Tracking Using a set of Cooperative Classifiers based on Haar-like Features,” Res. Lett. Inf. Math. Science, vol. 7, pp. 29-42, 2005. [14] Q. Chen, N. D. Georganas and E. M. Petriu, “Real-time Vision-based Hand Gesture Recognition Using Haar-like Features,” Proceedings of IEEE Transactions on Instrumentation and Measurement, pp. 1-6, 2007. [15] R. Lienhart and J. Maydt, “An Extended set of Haar-like Features for Rapid Object Detection,” Proceedings of IEEE Int. Conf. Image Process, vol. 1, pp. 900-903, 2002. [16] R. Giraldo, D. M. Giraldo, and S. A. Meza, “Kernel Based Hand Gesture Recognition Using Kinect Sensor,” Proceedings of the 17th Symposium of Image, Signal Processing, and Artificial Vision, pp. 158-161, 2012. [17] “Kernel method,” http://blog.csdn.net/songzitea/article/details/21774601, 2004. [18] H. Li, L. Yang, X. Wu, S. Xu and Y. Wang, “Static Hand Gesture Recognition Based on HOG with Kinect,” Proceedings of the 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 271–273, 2012. [19] M. Z. Brown, D. Burschka and G. D. Hager, “Advances in Computational Stereo,” Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 993-1008, 2003. [20] M. Gosta and M. Grgic, “Accomplishments and Challenges of Computer Stereo Vision,” Proceedings of 52nd International Symposium, pp. 57-64, 2010. [21] M. Bleyer, “Segmentation-based Stereo and Motion with Occlusions,” ph. D. dissertation, Vienna University of Technology, 2006. [22] R. Szeliski, “Computer Vision: Algorithms and Applications,” Springer, 2010. [23] R. Lange, “3D Time-of-Flight Distance Measurement with Custom Solid-state Image Sensors in CMOS/CCD-technology,” ph. D. dissertation, University of Siegen, 2000. [24] “PMDTechnologies GmbH,” http://www.pmdtec.com/index.php, 2010. [25] X. Liu and K. Fujimura, “ Hand Gesture Recognition using Depth Data,” Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 529-534, 2004. [26] PrimeSense Ltd., “PrimeSense Reference Design 1.08,” 2010. [27] Z. Zalevsky, A. Shpunt, A. Maizels, and J. Garcia, “Method and System for Object Reconstruction,” World Intellectual Property Organization publication WO 2007/043036 A1, 2006. [28] A. Shpunt and Z. Zalevsky, “Three-dimension Sensing using Speckle Patterns,” World Intellectual Property Organization publication WO/2007/105205, 2007. [29] A. Shpunt and Z. Zalevsky, “Depth-varying Light Fields for Three Dimensional Sensing,” US patent publication US 2008/0106746, 2008. [30] “Mircosoft KinectTM”, http://www.xbox.com/en-US/xbox360/accessories/kinect, 2010. [31] C. Ye and M. Bruch, “A Visual Odometry Method Based on the SwissRanger SR4000,” Proceedings of Unmanned Systems Technology XII Conference at 2010 SPIE Defense, Security, and Sensing, vol. 7692, 2010. [32] S. Hong, C. Ye, M. Bruch and R. Halterman, “Performance Evaluation of a Pose Estimation Method based on the SwissRanger SR4000,” Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 499-504, 2012. [33] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297, 1967. [34] R.L. Graham, “An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set, ” Information Processing Letters 1, pp. 132-133, 1972. [35] “Candescent.ch: center of the palm and finger detection Part II,” http://blog.candescent.ch, 2011. [36] C.C. Chang, C.J. Lin, “LIBSVM: A Library for Support Vector Machines,” ACM Transactions on Intelligent Systems and Technology, pp. 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. [37] “GestureWorks,” http://gestureworks.com, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57153 | - |
dc.description.abstract | 在人機互動的領域中,人們一直想要找個方法來取代傳統的鍵盤和滑鼠,所以在這情況下就衍生了利用手勢來進行對機器的操作。而運用手勢辨識的概念不但經常在科技電影可以看到,也在具有多點觸控的智慧型手機和觸控板上成為流行,但是觸控式螢幕尺寸的大小限制將會影響到手勢辨識的準確性以及多元性,因此本論文目的為利用三維空間資訊為主來達到即時的手勢辨識,且在無多點觸控能力之螢幕的情況下,依舊能夠辨識出使用者所作的手勢。
本系統使用Kinect感應器得到完整的三維資訊,並運用深度直方圖機制,無論在任何環境下都可以偵測出使用者的手,在使用K-means分群法下,即使手有重疊的情況也可以正確地區分數量。為了發展更多元的手勢,我們利用多指的合併和分開來發展更多元的手勢,但因為每個人的習慣和手指的粗細不盡相同,因此我們利用了機器學習和支持向量機依照不同的特徵值來判斷手指正確的數量,最後再利用有限狀態機來判斷動態的手勢。 | zh_TW |
dc.description.abstract | In recent years, people have tried to find more efficient ways to replace the old-fashioned keyboards and mice in communication between humans and computers. Among several attempts in this direction, gestures have received considerable attention as they already serve as a natural form of human interaction. The use of gestures in human-computer interaction, once only appeared in science fiction movies, has gradually become reality thanks to the advance of technologies such as multi-touch screens. The size of a touch screen, however, restricts the development of gesture recognition to a certain extent. The objective of this thesis is to develop a real-time system capable of recognizing hand gestures with a touch-less interface by taking advantage of 3D sensing capabilities of depth information.
The proposed system acquires accurate 3D data from Kinect, and use depth histograms in order to perform hand localization from any arbitrary background. The K-means clustering algorithm is used to determine the number of hands found in the image, even when occlusion occurs due to hand overlapping. In order to accommodate a diversity of gestures, we take advantage of different combinations and separations of fingertips. To cope with a variety of user habits and thickness of fingers, we use machine learning and SVM to determine the accurate amounts of fingers based on different features. Finally, a finite-state machine is used to determine the dynamic gestures of hand movements. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:36:19Z (GMT). No. of bitstreams: 1 ntu-103-R01921079-1.pdf: 32710095 bytes, checksum: fe9f2789981c69f22f0a00ad8480f713 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii Chapter 1 緒論 1 1.1 動機 1 1.2 研究貢獻 2 1.3 組織架構 3 Chapter 2 相關研究 4 2.1 手勢操作起源 4 2.2 手勢辨識 5 2.2.1 姿勢行為分類 5 2.2.2 應用範圍 6 2.3 三維深度攝影機 10 2.3.1 立體視覺法 10 2.3.2 時差測距法 12 2.3.3 光編碼 14 2.4 感應器的選擇 16 Chapter 3 手勢辨識系統 18 3.1 手勢辨識系統流程介紹 18 3.2 手部定位 19 3.2.1 建立深度直方圖 19 3.2.2 K-means分群演算法 21 3.3 手部特徵擷取 22 3.3.1 凸包偵測 22 3.3.2 掌心與手腕 23 3.4 手指數量判別與指尖位置偵測 25 3.4.1 手指特徵 25 3.4.2 利用支持向量機判斷手指數量 27 3.4.3 指尖定位 31 3.5 手勢判斷 32 3.5.1 手勢分類 32 3.5.2 利用有限狀態機來判別手勢 35 Chapter 4 實驗結果與分析 37 4.1 分析手部定位 37 4.2 分析手指偵測 41 4.3 手勢辨識系統 45 4.4 系統效能分析 47 Chapter 5 結論與未來發展 48 REFERENCES 49 i 中文摘要 ii ABSTRACT | |
dc.language.iso | zh-TW | |
dc.title | 利用深度攝影機擷取手指特徵之即時動態手勢辨識 | zh_TW |
dc.title | Real-time Dynamic Hand Gesture Recognition Based on Finger Features Using a Depth Sensing Camera | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭斯彥(Sy-Yen Kuo),雷欽隆(Chin-Laung Lei),莊仁輝(Jen-Hui Chuang),黃秋煌(Chua-Huang Huang) | |
dc.subject.keyword | 即時動態手勢辨識,多點偵測,手指偵測,手指特徵擷取,K-平均分群法,Kinect感應器,三維空間深度資訊,人機互動,支持向量機器,機器學習, | zh_TW |
dc.subject.keyword | real-time dynamic gesture recognition,multi-touch,fingertip detection,fingertips extractions,K-means Clustering,Kinect,3D depth sensing,human-computer interaction,support vector machine,machine learning, | en |
dc.relation.page | 52 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 31.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。