Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿(Lih-Ching Hsu)
dc.contributor.authorShao-Fu Wuen
dc.contributor.author吳少夫zh_TW
dc.date.accessioned2021-06-16T06:36:07Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-01
dc.identifier.citation1. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C. Proposals for the classification of the acute leukaemias (FAB Co-operative Group). British Journal of Haematology. 1976;33:451-458.
2. Rowley JD, Golomb HM, Dougherty C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet. 1977; 1:549-550
3. Grimwade D, Biondi A, Mozziconacci MJ, Hagemeijer A, Berger R, Neat M, Howe K, Dastugue N, Jansen J, Radford-Weiss I, Lo Coco F, Lessard M, Hernandez JM, Delabesse E, Head D, Liso V, Sainty D, Flandrin G, Solomon E, Birg F, Lafage-Pochitaloff M. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood. 2000;96:1299- 1310.
4. Corey SJ, Locker J, Oliveri DR, Shekhter-Levin S, Redner RL, Penchansky L, Gollin SM. A non-classical translocation involving 17q12 (retinoic acid receptor a) in acute promyelocytic leukemia (APML) with atypical features. Leukemia. 1994;8: 1350-1353.
5. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin retinoic acid receptor fusion. Blood. 1996;87:882-886.
6. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-a locus due to a variant t(11; 17) translocation associated with acute promyelocytic leukaemia. EMBO Journal. 1993;12:1161-1167.
7. Arnould C, Philippe C, Bourdon V, Gre’ goire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor a in acute promyelocytic-like leukemia. Human Molecular Genetics. 1999;8: 1741-1749.
8. Bernard J. History of promyelocytic leukaemia. Leukemia. 1994;8 suppl 2:S1-5.
9. Degos L, Dombret H, Chomienne C, Daniel MT, Miclea JM, Chastang C, Castaigne S, Fenaux P. All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood. 1995;85:2643-2653.
10. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Woods WG, Ogden A, Weinstein H, Shepherd L, Willman C, Bloomfield CD, Rowe JM, Wiernik PH. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood. 2002;100:4298-4302.
11. Fenaux P, Castaigne S, Dombret H, Archimbaud E, Duarte M, Morel P, Lamy T, Tilly H, Guerci A, Maloisel F. Alltransretinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia: a pilot study on 26 cases. Blood. 1992;80:2176-2181.
12. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354-3360.
13. Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. International Journal of Hematology. 2013;97:717-725.
14. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z. In vitro studies on cellular and molecular mechanisms of arsenic trioxide induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996;88:1052-1061.
15. Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology. 2008; 9:309-322.
16. Giannakakou P, Sackett D, Fojo T. Tubulin/microtubules: still a promising target for new chemotherapeutic agents (editorial; comment). Journal of the National Cancer Institute. 2000;92:182-183.
17. Dumontet C1, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature Reviews Drug Discovery. 2010; 9:790-803.
18. Pellegrini F, Budman DR. Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Investigation. 2005;23:264-273.
19. Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C, Braguer D. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. The Journal of Biological Chemistry. 2002;277:33664-33669.
20. Field JJ, Kanakkanthara A, Miller JH. Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorganic & Medicinal Chemistry. Prepublished on March 4, 2014, as DOI 10.1016/j.bmc.2014.02.035.
21. Jordan MA, Toso RJ, Thrower D, Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proceedings of the National Academy of Sciences of the United States of America. 1993;90:9552-9556.
22. Talpir R, Benayahu Y, Kashman Y, Pannell L, Schleyer M. Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Letters. 1994;35:4453-4456.
23. Coleman JE, Dilip de Silva E, Kong F, Andersen RJ, Allen TM. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron. 1995;51:10653-10662.
24. Anderson HJ, Coleman JE, Anderson RJ, Roberge M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemotherapy and Pharmacology. 1997;39:223-226.
25. Bai R, Durso NA, Sackett DL, Hamel E. Interactions of the spone-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry. 1999;23:489-493.
26. Hsu LC, Durrant DE, Huang CC, Chi NW, Baruchello R, Rondanin R, Rullo C, Marchetti P, Grisolia G, Simoni D, Lee RM. Development of hemiasterlin derivatives as potential anticancer agents that inhibit tubulin polymerization and synergize with a stilbene tubulin inhibitor. Investigational New Drugs. 2012;30:1379-1388.
27. Lai WT. 2013. The hemiasterlins derivative BF65 synergizes with an Akt inhibitor MK-2206 to inhibit ovarian cancer cell growth. Mater thesis, National Taiwan University, Taipei, R.O.C. (Taiwan).
28. Zhou B-BS, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433-439.
29. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H. Molecular Cell Biology, 6th Edition. W. H. Freeman, New York, USA. 2008.
30. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000;404:613-617.
31. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162-1166.
32. Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY, Bode AM, Dong Z. Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Molecular Cell. 2006;23:121-132.
33. Cook PJ, Ju BG, Telese F Wang X, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature. 2009;458:591-596.
34. Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunology Review. 2003;193:10-21.
35. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature Review Molecular Cell Biology. 2008;9:231-241.
36. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Molecular Cell. 2010;40:280-93.
37. Tanida I. Autophagosome formation and Molecular mechanism of autophagy. Antioxidants & Redox Signaling. 2011;14:2201-2214.
38. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2011;146:682-95.
39. Nencioni A, Cea M, Montecucco F, Longo VD, Patrone F, Carella AM, Holyoake TL, Helgason GV. Autophagy in blood cancers: biological role and therapeutic implications. Haematologica. 2013;98:1335-1343.
40. Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death and Differentiation. 2007;14:548-558.
41. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation. 2003;112:1809-1820.
42. Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Marino G, Galluzzi L, Criollo A, Michaud M, Maiuri MC, Chano T, Madeo F, Kroemer G. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle. 2011;10:2763-2769.
43. Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Molecular Cell. 2011;42:23-35.
44. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Review Molecualar Cell Biology. 2007;8:741-752.
45. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nature Review Drug Discovery. 2007;6:304-312.
46. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323:793-797.
47. Benekli M, Xia Z, Donohue KA, Ford LA, Pixley LA, Baer MR, Baumann H, Wetzler M. Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival. Blood. 2002;99:252-257.
48. Zhou J, Bi C, Janakakumara JV, Liu SC, Chng WJ, Tay KG, Poon LF, Xie Z, Palaniyandi S, Yu H, Glaser KB, Albert DH, Davidsen SK, Chen CS. Enhanced activation of STAT pathways and overexpression of survivin confer resistance to FLT3 inhibitors and could be therapeutic targets in AML. Blood. 2009;113:4052-4062.
49. Redell MS, Ruiz MJ, Alonzo TA, Gerbing RB, Tweardy DJ. Stat3 signaling in acute myeloid leukemia: ligand-dependent and –independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood. 2011;117:5701-5709.
50. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nature Review Cancer. 2004;4:253-265.
51. Nieman JA, Coleman JE, Wallace DJ, Piers E, Lim LY, Roberge M, Andersen RJ. Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. Journal of Natural Products. 2003;66:183-199.
52. Ghosal G, Chen J. DNA damage tolerance: a double-edged sword guarding the genome. Translational Cancer Research. 2013;2:107-129.
53. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nature Review Cancer. 2005;5:726-734.
54. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Review Cancer. 2009;9:798-809.
55. Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods in Molecular Biology. 2008;445:77-88.
56. Chiu WH, Luo SJ, Chen CL, Cheng JH, Hsieh CY, Wang CY, Huang WC, Su WC, Lin CF. Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochemical Pharmacology. 2012;83:1159-1171.
57. Viola G, Bortolozzi R, Hamel E, Moro S, Brun P, Castagliuolo I, Ferlin MG, Basso G. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochemical Pharmacology. 2012;83:16-26.
58. Yang M, Zeng P, Kang R, Yu Y, Yang L, Tang D, Cao L. S100A8 contributes to drug resistance by promoting autophagy in leukemia celcls. PLoS One. Prepublished on May 12, 2014, as DOI 10.1371/journal.pone.0097242.
59. Zhang Q, Raje V, Yakovlew VA, Yacoub A, Szczepanek, Meier J, Derecka M, Chen Q, Hu Y, Sisler J, Hamed H, Lesnefsky EJ, Valerie K, Dent P, Larner AC. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation. The Journal of Biological Chemistry. 2013;288:31280-31288.
60. Leung MF, Sartorelli AC. The effects of microtubule disrupting drugs on the differentiation of HL-60 leukemia cells. Leukemia Research. 1992;9:929-935.
61. Loganzo F, Discafani CM, Annable T, Beyer C, Musto S, Hari M, Tan X, Hardy C, Hernandez R, Baxter M, Singanallore T, Khafizova G, Poruchynsky MS, Fojo T, Nieman JA, Ayral-Kaloustian S, Zask A, Andersen RJ, Greenberger LM. HTI-286, a synthetic analogue of the tripeptide hemiasterlins, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Research. 2003;63:1838-1845.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57146-
dc.description.abstractBF65為全合成之hemiasterlin衍生物,並已知具有抗微管之作用。典型的hemiasterlins是萃取自海棉的天然化合物,具有三肽(tripeptide)結構,並可與α型微管結合,其結合位點鄰近於長春花生物鹼類(vinca-alkaloids)在β型微管的結合位點,能抑制微管的聚合。BF65除了可影響參與調控細胞週期蛋白質表現,並同時可引起細胞死亡的訊息傳遞,與長春花生物鹼類藥物如vincristine相似。我們利用人類急性前骨髓性細胞白血病(acute promyelocytic leukemia, APL)細胞株HL-60測試BF65的抗癌活性。APL屬於急性骨髓性細胞白血病(acute myelocytic leukemia, AML)下的第三亞型,目前臨床上的治療選擇包含許多化療藥物,如vincristine。已知的抗微管藥物大部分造成細胞週期停滯於有絲分裂階段(mitosis phase),最終促使細胞凋亡(apoptosis)。然而我們發現HL-60受BF65處理過後也會造成磷酸化組織蛋白H2A.X(phospho-histone H2A.X, γ-H2AX)的蛋白質表現增加及進入S期的細胞數有微幅上升,前述均為DNA受損的表徵,且作用發生的時間點早於有絲分裂期的停滯與細胞凋亡。BF65除了造成γ-H2AX的增加之外,同時降低細胞內的轉錄訊息傳遞及活化子蛋白3(Stat3)與B細胞白血病淋巴瘤蛋白2(Bcl-2)的表現,BF65所引起的這些現象能受到c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)抑制劑SP600125所阻隔。此外我們也發現SP600125同時也能逆轉BF65所引發的粒線體膜電位喪失,但卻不影響細胞週期的改變。我們也注意到BF65能抑制細胞自噬作用(autophagy)。因此,我們推論BF65在抑制微管作用的同時,也會透過JNK的訊息傳遞途徑造成DNA損傷。而BF65抑制自噬和Stat3的能力可能有利於更進一步的抗癌應用。zh_TW
dc.description.abstractBF65, a synthetic hemiasterlin, has been known for its anti-microtubule effect. Classic hemiasterlins are natural products extracted from marine sponges. With tripeptide-like structure, hemiasterlins bind to α-tubulin, but the binding site is close to the vinca alkaloid-binding site on β-tubulin, and inhibit tubulin polymerization. BF65 affects proteins involved in cell cycle regulation and signal transduction of cell death in a way similar to vinca alkaloids, such as vincristine. We test the anticancer activity of BF65 in HL-60, a human promyelocytic leukemia cell line. Acute promylocytic leukemia (APL) is a subtype (M3) of acute myeloid leukemia (AML) and several chemotherapy drugs have been approved for AML, including vincristine. Usual anti-microtubule agents cause cell cycle arrest in mitosis, eventually leading cells to apoptosis. However, we find that BF65 also induces increased level of phospho-histone H2A.X (γ-H2AX) and slightly elevates cell population at S-phase, both of which are markers for DNA damage, prior to M-phase arrest in HL-60. Interestingly, BF65-induced γ-H2AX can be partially reduced when c-Jun N-terminal kinase (JNK) is inhibited by SP600125. Moreover, BF65 downregulates signal transducer and activator of transcription 3 (Stat3) and B-cell leukemia lymphoma-2 (Bcl-2), which can be blocked by SP600125 without altering BF65-induced cell cycle arrest. Surprisingly, SP600125 is also able to reverse the mitochondrial membrane potential loss resulted from BF65 treatment. In addition, we notice that BF65 seems to inhibit autophagy. Thus, we propose that BF65 may also cause DNA damage through JNK-mediated pathway while inhibiting normal microtubule function. Besides, BF65-induced decrease in autophagic activity and Stat3 expression may be beneficial for further anticancer applications.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:36:07Z (GMT). No. of bitstreams: 1
ntu-103-R01423009-1.pdf: 2898193 bytes, checksum: 1eb20fa0bf670d5d765b8f9c95f95f30 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of Contents
Certification by the Oral Defense Committee i
Acknowledgements ii
Chinese Abstract iii
English Abstract iv
Table of Contents vi
List of Figures ix
List of Tables xi
List of Abbreviations xii
I. Introduction 1
I-1 Acute promyelocytic leukemia and clinical therapy 1
I-2 Anti-microtubule agents 4
I-3 Hemiasterlins and BF65 5
I-4 DNA damage 6
I-5 Apoptosis 7
I-6 Autophagy 8
I-7 Role of Stat3 in leukemia 10
II. Research Significance and Objectives 20
III. Materials & Methods 21
III-1 Materials 21
III-2 Cell Line and Cell Culture 22
III-3 MTT Assay 22
III-4 SDS-PAGE and Western Blotting 22
III-5 Flow Cytometric Analysis of DNA Content 23
III-6 Flow cytometric assay of γ-H2AX and PI double staining 23
III-7 Immunofluorescence Staining 24
III-8 Comet Assay 25
III-9 Mitochondrial Membrane Potential Loss Detection 26
III-10 ROS Detecction 26
III-11 Statistical Analysis 27
IV. Results 28
IV-1 BF65 displays cytotoxicity in HL-60 28
IV-2 BF65 arrests the cell cycle at G2/M phase 28
IV-3 The effect of BF65 on cell cycle-related proteins 29
IV-4 The effect of BF65 on apoptosis-related signaling 30
IV-5 BF65 inhibits the formation of lipid-bounded LC3-II, a marker for autophagy 31
IV-6 BF65 induces the accumulation of γ-H2AX, a marker for DNA damage 32
IV-7 BF65 induces DNA damage and causes comet tails in the comet assay 33
IV-8 BF65 downregulates the expression of Stat3 33
IV-9 JNK inhibitor SP600125 can partially reverse BF65-induced DNA damage 34
IV-10 BF65 causes mitochondrial membrane potential (MMP) loss, which could be reversed by SP600125 35
IV-11 BF65 induces slight reactive oxygen species (ROS) generation, which could be blocked by SP600125 36
V. Discussion 37
V-1 BF65 displays cytotoxicity in HL-60 resulting in cell cycle arrest and apoptosis 37
V-2 Different from some anti-microtubule agents, BF65 inhibits autophagy rather than promotes autophagic activity in HL-60 37
V-3 BF65 may target mitochondria through JNK activation and Stat3 downregulation, eventually leading to DNA damage 38
V-4 The role of ROS in the anti-cancer mechanism of BF65 39
V-5 Potential of BF65 application in anti-leukemia therapy 39
VI. Conclusion 41
References 59
dc.language.isoen
dc.subjectBF65zh_TW
dc.subject抗微管zh_TW
dc.subjectDNA 損傷zh_TW
dc.subjectJNKzh_TW
dc.subject細胞自噬zh_TW
dc.subject血癌zh_TW
dc.subjecthemiasterlinszh_TW
dc.subjectanti-microtubuleen
dc.subjectJNKen
dc.subjectautophagyen
dc.subjectDNA damageen
dc.subjectleukemiaen
dc.subjecthemiasterlinsen
dc.subjectBF65en
dc.titleHemiasterlin衍生物BF65在血癌的抗癌機轉探討zh_TW
dc.titleInvestigation of Anticancer Mechanisms of a Hemiasterlin Derivative BF65 in Leukemia Cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孔繁璐,顧記華
dc.subject.keywordBF65,hemiasterlins,抗微管,DNA 損傷,細胞自噬,JNK,血癌,zh_TW
dc.subject.keywordBF65,hemiasterlins,anti-microtubule,DNA damage,autophagy,JNK,leukemia,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2014-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved