請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57145完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱麗珠 | |
| dc.contributor.author | Ming-Han Chen | en |
| dc.contributor.author | 陳鳴翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:36:05Z | - |
| dc.date.available | 2019-10-15 | |
| dc.date.copyright | 2014-10-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-31 | |
| dc.identifier.citation | Alvarez, Y., C. Perez-Mana, M. Torrens, and M. Farre. 2013. Antipsychotic drugs in cocaine dependence: a systematic review and meta-analysis. J Subst Abuse Treat 45 (1):1-10.
Amato, L., S. Minozzi, P. P. Pani, R. Solimini, S. Vecchi, P. Zuccaro, and M. Davoli. 2011. Dopamine agonists for the treatment of cocaine dependence. Cochrane Database Syst Rev 7 (12). Arias-Carrion, O., M. Stamelou, E. Murillo-Rodriguez, M. Menendez-Gonzalez, and E. Poppel. 2010. Dopaminergic reward system: a short integrative review. Int Arch Med 3 (24):1755-7682. Bahari-Javan, S., A. Maddalena, C. Kerimoglu, J. Wittnam, T. Held, M. Bahr, S. Burkhardt, I. Delalle, S. Kugler, A. Fischer, and F. Sananbenesi. 2012. HDAC1 regulates fear extinction in mice. J Neurosci 32 (15):5062-5073. Baik, J. H. 2013. Dopamine signaling in reward-related behaviors. Front Neural Circuits 7 (152). Bannister, A. J., and T. Kouzarides. 2011. Regulation of chromatin by histone modifications. Cell Res 21 (3):381-395. Berke, J. D., and S. E. Hyman. 2000. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25 (3):515-532. Bjerling, P., R. A. Silverstein, G. Thon, A. Caudy, S. Grewal, and K. Ekwall. 2002. Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol 22 (7):2170-2181. Bjorklund, A., and S. B. Dunnett. 2007. Dopamine neuron systems in the brain: an update. Trends Neurosci 30 (5):194-202. Bozarth, M. A. 1990. Drug addiction as a psychobiological process. Addiction controversies:(pp. 112-134 + refs). Brody, S. L., C. M. Slovis, and K. D. Wrenn. 1990. Cocaine-related medical problems: consecutive series of 233 patients. Am J Med 88 (4):325-331. Broide, R. S., J. M. Redwine, N. Aftahi, W. Young, F. E. Bloom, and C. J. Winrow. 2007. Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci 31 (1):47-58. Brower, K. J., E. Maddahian, F. C. Blow, and T. P. Beresford. 1988. A comparison of self-reported symptoms and DSM-III-R criteria for cocaine withdrawal. Am J Drug Alcohol Abuse 14 (3):347-356. Carroll, K. M. 2005. Recent advances in the psychotherapy of addictive disorders. Curr Psychiatry Rep 7 (5):329-336. Cassel, S., D. Carouge, C. Gensburger, P. Anglard, C. Burgun, J. B. Dietrich, D. Aunis, and J. Zwiller. 2006. Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 70 (2):487-492. Chuang, D. M., Y. Leng, Z. Marinova, H. J. Kim, and C. T. Chiu. 2009. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32 (11):591-601. Coffey, S. F., B. S. Dansky, M. H. Carrigan, and K. T. Brady. 2000. Acute and protracted cocaine abstinence in an outpatient population: a prospective study of mood, sleep and withdrawal symptoms. Drug Alcohol Depend 59 (3):277-286. Crits-Christoph, P., L. Siqueland, J. Blaine, A. Frank, L. Luborsky, L. S. Onken, L. R. Muenz, M. E. Thase, R. D. Weiss, D. R. Gastfriend, G. E. Woody, J. P. Barber, S. F. Butler, D. Daley, I. Salloum, S. Bishop, L. M. Najavits, J. Lis, D. Mercer, M. L. Griffin, K. Moras, and A. T. Beck. 1999. Psychosocial treatments for cocaine dependence: National Institute on Drug Abuse Collaborative Cocaine Treatment Study. Arch Gen Psychiatry 56 (6):493-502. de Ruijter, A. J., A. H. van Gennip, H. N. Caron, S. Kemp, and A. B. van Kuilenburg. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370 (Pt 3):737-749. Dequiedt, F., H. Kasler, W. Fischle, V. Kiermer, M. Weinstein, B. G. Herndier, and E. Verdin. 2003. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 18 (5):687-698. Di Chiara, G., and A. Imperato. 1988. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85 (14):5274-5278. Feng, J., and E. J. Nestler. 2013. Epigenetic mechanisms of drug addiction. Curr Opin Neurobiol 23 (4):521-528. Gainetdinov, R. R., T. D. Sotnikova, and M. G. Caron. 2002. Monoamine transporter pharmacology and mutant mice. Trends Pharmacol Sci 23 (8):367-373. Gao, L., M. A. Cueto, F. Asselbergs, and P. Atadja. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277 (28):25748-25755. Harper, S. J., and N. S. Jones. 2006. Cocaine: what role does it have in current ENT practice? A review of the current literature. J Laryngol Otol 120 (10):808-811. Hornykiewicz, O. 1966. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18 (2):925-964. Host, L., J. B. Dietrich, D. Carouge, D. Aunis, and J. Zwiller. 2011. Cocaine self-administration alters the expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition. J Psychopharmacol 25 (2):222-229. Howell, L. L., and H. L. Kimmel. 2008. Monoamine transporters and psychostimulant addiction. Biochem Pharmacol 75 (1):196-217. Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X. F. Wang, and T. P. Yao. 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417 (6887):455-458. Hwang, L. L., C. H. Wang, T. L. Li, S. D. Chang, L. C. Lin, C. P. Chen, C. T. Chen, K. C. Liang, I. K. Ho, W. S. Yang, and L. C. Chiou. 2010. Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity 18 (3):463-469. Imai, S., C. M. Armstrong, M. Kaeberlein, and L. Guarente. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403 (6771):795-800. Itzhak, Y., S. Liddie, and K. L. Anderson. 2013. Sodium butyrate-induced histone acetylation strengthens the expression of cocaine-associated contextual memory. Neurobiol Learn Mem 102:34-42. Jaenisch, R., and A. Bird. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245-254. Jeffcoat, A. R., M. Perez-Reyes, J. M. Hill, B. M. Sadler, and C. E. Cook. 1989. Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metab Dispos 17 (2):153-159. Johnstone, R. W. 2002. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1 (4):287-299. Karch., S. B. 2006. A Brief History of Cocaine. second ed. Boca Raton, Florida: CRC Press. Kasler, H. G., and E. Verdin. 2007. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol 27 (14):5184-5200. Kilgore, M., C. A. Miller, D. M. Fass, K. M. Hennig, S. J. Haggarty, J. D. Sweatt, and G. Rumbaugh. 2010. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35 (4):870-880. Koppel, B. S., L. Samkoff, and M. Daras. 1996. Relation of cocaine use to seizures and epilepsy. Epilepsia 37 (9):875-878. Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128 (4):693-705. Kumar, A., K. H. Choi, W. Renthal, N. M. Tsankova, D. E. Theobald, H. T. Truong, S. J. Russo, Q. Laplant, T. S. Sasaki, K. N. Whistler, R. L. Neve, D. W. Self, and E. J. Nestler. 2005. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48 (2):303-314. Lago, J. A., and T. R. Kosten. 1994. Stimulant withdrawal. Addiction 89 (11):1477-1481. Lange, R. A., R. G. Cigarroa, C. W. Yancy, Jr., J. E. Willard, J. J. Popma, M. N. Sills, W. McBride, A. S. Kim, and L. D. Hillis. 1989. Cocaine-induced coronary-artery vasoconstriction. N Engl J Med 321 (23):1557-1562. Lee, H. S., H. R. LaMaute, W. F. Pizzi, D. L. Picard, and F. I. Luks. 1990. Acute gastroduodenal perforations associated with use of crack. Ann Surg 211 (1):15-17. Li-Wei Tung, G.-L. L., Yen-Hsien Lee, Lung Yu, Hsin-Jung Lee, Ling-Ling, and M.-S. H. Hwang, Ken Mackie, Andreas Zimmer & Lih-Chu Chiou. 2013. A novel mechanism for restraint stress-induced cocaine relapse: Orexin-induced dopaminergic disinhibition mediated by 2-arachidonoylglycerol in the ventral tegmental area. In 42nd Society For Neuroscience. San Diego, CA. Li, B., A. Samanta, X. Song, K. T. Iacono, K. Bembas, R. Tao, S. Basu, J. L. Riley, W. W. Hancock, Y. Shen, S. J. Saouaf, and M. I. Greene. 2007. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci U S A 104 (11):4571-4576. Ma, C., and S. R. D'Mello. 2011. Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism. J Biol Chem 286 (6):4819-4828. Malvaez, M., S. C. McQuown, G. A. Rogge, M. Astarabadi, V. Jacques, S. Carreiro, J. R. Rusche, and M. A. Wood. 2013. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110 (7):2647-2652. Malvaez, M., C. Sanchis-Segura, D. Vo, K. M. Lattal, and M. A. Wood. 2010. Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67 (1):36-43. Marek, L., A. Hamacher, F. K. Hansen, K. Kuna, H. Gohlke, M. U. Kassack, and T. Kurz. 2013. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem 56 (2):427-436. Marie, N., C. Canestrelli, and F. Noble. 2012. Transfer of neuroplasticity from nucleus accumbens core to shell is required for cocaine reward. PLoS One 7 (1):17. McQuown, S. C., R. M. Barrett, D. P. Matheos, R. J. Post, G. A. Rogge, T. Alenghat, S. E. Mullican, S. Jones, J. R. Rusche, M. A. Lazar, and M. A. Wood. 2011. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31 (2):764-774. Minozzi, S., L. Amato, M. Davoli, M. Farrell, A. A. Lima Reisser, P. P. Pani, M. Silva de Lima, B. Soares, and S. Vecchi. 2008. Anticonvulsants for cocaine dependence. Cochrane Database Syst Rev 16 (2). Mogenson, G. J., D. L. Jones, and C. Y. Yim. 1980. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14 (2-3):69-97. National Survey on Drug Use and Health: National Findings. 2005. Rockville, Maryland: Substance Abuse and Mental Health Services Administration. Nestler, E. J. 2001. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2 (2):119-128. North, B. J., and E. Verdin. 2004. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5 (5):28. Osborn, H. H., M. Tang, K. Bradley, and B. R. Duncan. 1997. New-onset bronchospasm or recrudescence of asthma associated with cocaine abuse. Acad Emerg Med 4 (7):689-692. Pani, P. P., E. Trogu, S. Vecchi, and L. Amato. 2011. Antidepressants for cocaine dependence and problematic cocaine use. Cochrane Database Syst Rev 7 (12). Parra, M., and E. Verdin. 2010. Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 10 (4):454-460. Pastor, V., L. Host, J. Zwiller, and R. Bernabeu. 2011. Histone deacetylase inhibition decreases preference without affecting aversion for nicotine. J Neurochem 116 (4):636-645. Paxinos, G., and K. B. J. Franklin. 2001. The Mouse Brain in Stereotaxic Coordinates. second ed. San Diego. Pierce, R. C., and V. Kumaresan. 2006. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30 (2):215-238. Raybuck, J. D., E. J. McCleery, C. L. Cunningham, M. A. Wood, and K. M. Lattal. 2013. The histone deacetylase inhibitor sodium butyrate modulates acquisition and extinction of cocaine-induced conditioned place preference. Pharmacol Biochem Behav 106:109-116. Renthal, W., I. Maze, V. Krishnan, H. E. Covington, 3rd, G. Xiao, A. Kumar, S. J. Russo, A. Graham, N. Tsankova, T. E. Kippin, K. A. Kerstetter, R. L. Neve, S. J. Haggarty, T. A. McKinsey, R. Bassel-Duby, E. N. Olson, and E. J. Nestler. 2007. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56 (3):517-529. Renthal, W., and E. J. Nestler. 2008. Epigenetic mechanisms in drug addiction. Trends Mol Med 14 (8):341-350. Rezkalla, S. H., J. J. Mazza, R. A. Kloner, V. Tillema, and S. H. Chang. 1993. Effects of cocaine on human platelets in healthy subjects. Am J Cardiol 72 (2):243-246. Rogge, G. A., H. Singh, R. Dang, and M. A. Wood. 2013. HDAC3 is a negative regulator of cocaine-context-associated memory formation. J Neurosci 33 (15):6623-6632. Rome, L. A., M. L. Lippmann, W. C. Dalsey, P. Taggart, and S. Pomerantz. 2000. Prevalence of cocaine use and its impact on asthma exacerbation in an urban population. Chest 117 (5):1324-1329. Romieu, P., L. Host, S. Gobaille, G. Sandner, D. Aunis, and J. Zwiller. 2008. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28 (38):9342-9348. Russo, S. J., and E. J. Nestler. 2013. The brain reward circuitry in mood disorders. Nat Rev Neurosci 14 (9):609-625. Self, D. W., and E. J. Nestler. 1998. Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcohol Depend 51 (1-2):49-60. Sharma, R., C. H. Organ, Jr., E. R. Hirvela, and V. J. Henderson. 1997. Clinical observation of the temporal association between crack cocaine and duodenal ulcer perforation. Am J Surg 174 (6):629-632. Spanagel, R., and F. Weiss. 1999. The dopamine hypothesis of reward: past and current status. Trends Neurosci 22 (11):521-527. Stuber, G. D., J. P. Britt, and A. Bonci. 2012. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 71 (12):1061-1067. Tessier, P., D. V. Smil, A. Wahhab, S. Leit, J. Rahil, Z. Li, R. Deziel, and J. M. Besterman. 2009. Diphenylmethylene hydroxamic acids as selective class IIa histone deacetylase inhibitors. Bioorg Med Chem Lett 19 (19):5684-5688. Thomas, E. A. 2009. Focal nature of neurological disorders necessitates isotype-selective histone deacetylase (HDAC) inhibitors. Mol Neurobiol 40 (1):33-45. Tzeng, W. Y., J. Y. Chuang, L. C. Lin, C. G. Cherng, K. Y. Lin, L. H. Chen, C. C. Su, and L. Yu. 2013. Companions reverse stressor-induced decreases in neurogenesis and cocaine conditioning possibly by restoring BDNF and NGF levels in dentate gyrus. Psychoneuroendocrinology 38 (3):425-437. Vecsey, C. G., J. D. Hawk, K. M. Lattal, J. M. Stein, S. A. Fabian, M. A. Attner, S. M. Cabrera, C. B. McDonough, P. K. Brindle, T. Abel, and M. A. Wood. 2007. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27 (23):6128-6140. Wade, P. A. 2001. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 10 (7):693-698. Wise, R. A. 1984. Neural mechanisms of the reinforcing action of cocaine. NIDA Res Monogr 50:15-33. ———. 2004. Dopamine, learning and motivation. Nat Rev Neurosci 5 (6):483-494. World Drug Report 2007. Vienna, Austria United Nations Office on Drugs and Crime. Yang, X. J., and S. Gregoire. 2005. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25 (8):2873-2884. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57145 | - |
| dc.description.abstract | 藥物濫用是一個尚未見有效治療方式並且值得注意的社會經濟議題。長時間的藥物濫用會導致不正常的神經適應(neural adaptation)發生,目前非正常的神經適應被認為是藥物成癮的病因之一,可能導致終身行為上的異常。組蛋白乙醯化(Histone acetylation)是目前被研究最多的表觀遺傳學(epigenetics)機制之一,其受到組蛋白乙醯基轉移酶(histone acetyltransferases, HATs)和組蛋白去乙醯酶(histone deacetylases, HDACs)兩種酵素的調控,組蛋白乙醯化可藉由改變基因的表現進而影響神經和行為學上的可塑性(plasticity)和適應性,而神經和行為學上的可塑性被認為和藥物成癮相關。目前多數的研究是透過非選擇性的組蛋白去乙醯酶抑制劑或HDAC基因轉殖鼠來研究HDAC在古柯鹼成癮的動物模型中扮演的角色。
然而,不同種類的組蛋白去乙醯酶在大腦正回饋迴路(brain reward circuitry)中可能扮演著不同的角色。例如,抑制HDAC3被證明可以幫助古柯鹼的戒斷(extinction),但抑制HDAC1則被認為會有反效果。因此,各別種類的組蛋白去乙醯酶在成癮性疾病中扮演的角色是值得被研究的。在我們的研究中,我們檢視第IIa類組蛋白去乙醯酶選擇性抑制劑,包含WJ26220(選擇性HDAC4, 5, 7抑制劑)和LMK235(選擇性HDAC4, 5抑制劑),在古柯鹼之場域偏好性試驗(cocaine-induced place preference test, CPP)中對古柯鹼成癮表現的影響,藉此來闡明第IIa類組蛋白去乙醯酶(包含組蛋白去乙醯酶4, 5和7)在古柯鹼成癮中扮演著什麼樣的角色。 我們利用古柯鹼訓練8到10週大的C57BL/6雄性小鼠產生場域偏好性。小鼠待在愛好箱(preferred chamber)內和非愛好箱(non-preferred chamber)內的時間差異被定義為CPP score。此外,我們利用免疫螢光染色計算被DAPI標記並於組蛋白H3-lysine14(H3K14)位置有乙醯化的細胞數量,來檢視小鼠伏隔核核心部位(nucleus accumbens core, NAc core)組蛋白乙醯化的程度。我們也量測伏隔核核心部位中具有HDAC7免疫螢光標記的面積來評估HDAC7蛋白的表現量。 在三天場域偏好性訓練期中,於給予古柯鹼注射之前三十分鐘先給予腹腔注射賦形劑、WJ26220(選擇性HDAC4, 5, 7抑制劑,1 mg/kg)或LMK235(選擇性HDAC4, 5抑制劑,0.05 mg/kg),在沒有影響小鼠活動力的前提下,WJ26220顯著性抑制了古柯鹼誘發之場域偏好程度(CPP scores: 118±11 sec vs. 206±15 sec, n=10, p<0.001),然而LMK235以及vehicle則不影響CPP結果。另外,給予小鼠連續三天每天經腹腔注射WJ26220(1 mg/kg)或LMK235(0.05 mg/kg),我們發現小鼠伏隔核核心之組蛋白乙醯化的程度顯著性的增加了,由此結果我們可證實WJ26220和LMK235確可分布至腦中並有效抑制該部位之HDAC。綜合上述結果可推論WJ26220抑制古柯鹼誘發之場域偏好程度的效果可能主要是來自於抑制HDAC7。而透過免疫螢光染色我們觀察到,經過三天每日注射一劑古柯鹼的場域偏好性訓練期後,小鼠伏隔核核心部位之HDAC7蛋白表現量顯著性地增加,因此我們也推測古柯鹼導致之HDAC7表現量的增加可能為古柯鹼誘發場域偏好性產生的成因之一。 總結,我們的場域偏好性實驗結果首度顯示,第IIa類組蛋白去乙醯酶對於組蛋白的修飾於古柯鹼成癮中扮有關鍵性的角色。因此,第IIa類組蛋白去乙醯酶選擇性抑制劑(例如: WJ26220)對古柯鹼成癮應具有臨床治療的潛力。 | zh_TW |
| dc.description.abstract | Drug abuse is an unmet medical need and a noteworthy social and economic issue. A long-term drug abuse may result in abnormal neural adaptations thought to be involved in the pathogenesis of addictive disorders and drive life-long behavioral abnormalities. Histone acetylation, one of most studied epigenetic mechanisms, regulated by enzymes of histone acetyltransferases (HATs) and histone deacetylases (HDACs), has been recently reported to influence the neural and behavioral plasticity associated with drug addiction by altering gene expressions. Most of these studies investigated the role of HDACs, enzymes that repress histone acetylation, in animal models of cocaine acquisition by using non-selective HDAC inhibitors (also called pan-HDAC inhibitors), and some by using HDAC subtype-transgenic mice.
However, different subtypes of HDACs play opposite roles in brain reward circuitry. For example, HDAC3 inhibition was shown to improve cocaine extinction while HDAC1 inhibition inhibited extinction. Therefore, it is worthwhile to investigate the role of specific subtype of HDACs in addictive disorders. In this study, we revealed the role of class IIa HDACs including HDAC4, 5 and 7 in cocaine-induced addiction by examining the effects of WJ26220, a selective HDAC4, 5, 7 inhibitor, and LMK235, a selective HDAC4, 5 inhibitor, on the acquisition of cocaine-induced place preference. C57BL/6 mice (male, 8-10 weeks) were trained to addict to cocaine by a 5 day-bias paradigm of cocaine-paired conditioned place preference (CPP) test. The time spent difference between cocaine-preferred and non-preferred chambers was defined as the CPP score. Besides, we accessed histone acetylation in the nucleus accumbens (NAc) core, measured by the number of cells with co-immunoreactivity to both acetylated-histone H3 lysine 14 (Ac-H3K14) and DAPI by immunofluorescence. HDAC7 expression was also accessed in NAc core by immunofluorescence which measured the area of immunoreactivity to HDAC7. WJ26220 (1 mg/kg, i.p.), a selective HDAC4, 5, 7 inhibitor, or LMK235 (0.05 mg/kg, i.p.), a selective HDAC4, 5 inhibitor, was pretreated 30 minutes before cocaine-injection in the 3 days’ cocaine-pairing period. Daily pretreatment with WJ26220 30 minutes before cocaine-injection significantly attenuated cocaine-induced CPP (CPP scores: 118±11 sec vs. 206±15 sec, n=10, p<0.001) without affecting spontaneous motor activity. However, daily pretreatment with LMK235 or the vehicle, did not affect cocaine CPP. Nevertheless, histone acetylation in the NAc core was significantly increased after daily i.p. treatment of WJ26220 (1 mg/kg) or LMK235 (0.05 mg/kg) for 3 days. The latter results support the effectiveness of WJ26220 and LMK235 in terms of HDAC inhibition and brain permeability. The effectiveness of WJ26220 (a HDAC4, 5, 7 inhibitor) but not LMK235 (a selective HDAC4, 5 inhibitor), in attenuating cocaine-induced CPP suggests that HDAC7 inhibition contributes to WJ26220-induced attenuation of cocaine CPP. In parallel, the immunofluorescence showed an enhancement of HDAC7 expression in NAc core after 3 days’ cocaine conditioning, suggesting the involvement of HDAC7 activation in the formation of cocaine CPP. Taken together, our results for the first time suggest that histone modification by class IIa histone deacetylases may plays a pathogentic role in the acquisition phase of cocaine CPP, and that selective class IIa HDAC inhibitors (e.g. WJ26220) may be are potential therapeutic agents for cocaine addiction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:36:05Z (GMT). No. of bitstreams: 1 ntu-103-R01443002-1.pdf: 2555444 bytes, checksum: 6ad1177205580118a9fb95f7aa396185 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書______________________________________________i
誌謝_________________________________________________________ ii Abbreviation __________________________________________________iii 摘要_________________________________________________________iv Abstract______________________________________________________vi Introduction____________________________________________________1 Aim_________________________________________________________11 Materials and Methods__________________________________________12 Results ______________________________________________________18 Discussion____________________________________________________29 Conclusion ___________________________________________________37 Tables _______________________________________________________38 Pilot figures___________________________________________________42 Figures ______________________________________________________44 References ___________________________________________________55 | |
| dc.language.iso | en | |
| dc.subject | 古柯鹼 | zh_TW |
| dc.subject | 第IIa類組蛋白去乙醯? | zh_TW |
| dc.subject | 場域偏好性試驗 | zh_TW |
| dc.subject | 伏隔核 | zh_TW |
| dc.subject | 組蛋白乙醯化 | zh_TW |
| dc.subject | nucleus accumbens. | en |
| dc.subject | conditioned-place preference | en |
| dc.subject | class IIa HDACs | en |
| dc.subject | HDAC7 | en |
| dc.subject | histone acetylation | en |
| dc.subject | cocaine | en |
| dc.title | 第IIa類組蛋白去乙醯酶在古柯鹼成癮之角色 | zh_TW |
| dc.title | The Role of Class IIa Histone Deacetylase in Cocaine Addiction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游一龍,陳景宗,黃偉展,陶寶綠 | |
| dc.subject.keyword | 古柯鹼,場域偏好性試驗,第IIa類組蛋白去乙醯?,組蛋白乙醯化,伏隔核, | zh_TW |
| dc.subject.keyword | cocaine,conditioned-place preference,class IIa HDACs,HDAC7,histone acetylation,nucleus accumbens., | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
