Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅仁權(Ren C. Luo)
dc.contributor.authorTsung-Wei Linen
dc.contributor.author林宗緯zh_TW
dc.date.accessioned2021-06-16T06:35:34Z-
dc.date.available2014-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-01
dc.identifier.citation[1] C. C. Kemp, A. Edsinger, and E. Torres-Jara. (2007 Mar.) Challenges for robot ma-
nipulation in human environments. IEEE Robotics and Automation Mag. [Web]. pp.
20-29.
[2] D. Surdilovic, Y. Yakut, T. M. Nguyen, X. Pham, A. Vick, and R. Martin, ”Compli-
ance control with dual-arm humanoid robots: design, planning, and programming, ”
IEEE International Conference on Humanoid Robots, 2010, pp. 275-281.
[3] http://www.willowgarage.com/pages/pr2/overview, Willow Garage, last accessed on
3rd, May, 2014
[4] M. Bollini, J, Barry, and D. Rus, ”BakeBot: Baking Cookies with the PR2”, IEEE
International Conference on Intelligent Robots and Systems, 2011, San Fransisco,
California
[5] J. M. Shepard, M. C. Towner, J. Lei, and P. Abbeel, ”Cloth Grasp Point Detection
based on Multiple-View Geometric Cues with Application to Robotic Towel Fold-
ing,” IEEE International Conference on Robotics and Automation 2010 May 2-8,
2010, Anchorage, Alaska
[6] http://world.honda.com/ASIMO/, Honda, last accessed on 27th June 2014
[7] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, and
R. Dillmann, “ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor
Control, ”IEEE-RAS International Conference on Humanoid Robots, pp. 169-175,
Genova, Switzerland, Dec. 2006
[8] R. Ambrose, et al,“Robonaut: Nasa’s space humanoid,”IEEE Intelligent Systems
and their Applications, vol. 15, no. 4, pp. 57-63, 2000
[9] R.C. Goertz,“Fundamentals of general-purpose remote manipulators,”Nucleonnics,
vol. 10, no. 11, pp. 36-45, 1953
[10] http://www.motoman.com/products/robots/default.php, Yawkawa, last accessed on
2nd, June, 2014
[11] http://www.rethinkrobotics.com/products/baxter, Rethink Robotics, last accessed on
2nd, June, 2014
[12] http://www.universal-robots.com/GB/Products.aspx, Universal Robotics, last ac-
cessed on 27th, June, 2014
[13] A. A. Maciejewski, and Charles A. Klein, ”Obstacle avoidance for kinematically re-
dundant manipulators in dynamical varying environments,” The International Jour-
nal of Robotics Research, pp.109-116, April 1985
[14] J. Baillieul, ”Avoidance obstacles and resolving kinematic redundancy,” IEEE In-
ternational Conference on Robotics and Automation, pp. 1698-1704, 1986
[15] R. Stevenson, B. Shirinzadeh, and G. Alici, ”Singularity avoidance and aspect main-
tenance in redundant manipulators,” IEEE International Conference on Control, Au-
tomation, robotics and Vision, vol. 2, pp. 857-862, Dec. 2002
[16] M. Shimizu, H. Kakuya, W. K.Yoon, K. Kitagaki, and K. Kosuge, ”Analytical in-
verse kinematic computation for 7-DoF redundant manipulators with joint limits and
its application to redundancy resolution,” IEEE Transaction on Robotics, vol. 24, no.
5, Oct. 2008
[17] H. Moradi and S. Lee,”Joint limit analysis and elbow movement minimization for
redundant manipulators using closed form method,”Springer Advances in Intelligent
Computing Lecture Notes in Computer Science, vol. 3645, pp. 423-432, 2005
[18] C. Yu, M. Jin, and H. Liu,”An analytical solution for inverse kinematic of 7-DoF re-
dundant manipulators with offset-wrist,”IEEE International Conference on Mecha-
tronics and Automation, pp. 92-97, Chengdu, China, Aug., 2012
[19] G. K. Singh and J. Claassens,“An analytical solution for the inverse kinematics of a
redundant 7DoF manipulator with link offsets,”IEEE/RSJ International Conference
on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 18-22, 2010, pp.2976-2982
[20] B. Tondu, ”A closed-form inverse kinematic modelling of a 7R anthropomorphic
upper limb based on a joint parametrization,” IEEE International Conference on
Humanoids, Genova, Italy, Dec. 4-6, 2006, pp. 390-397
[21] H. Seraji, ”Configuration control of redundant manipulators: theory and implemen-
tation,” IEEE Transactions on Robotics and Automation, vol. 5, no. 4, Aug., 1989
[22] M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Comm. of
the ACM, Vol 24, pp 381-395, 1981
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57125-
dc.description.abstract使人類成為萬物之靈,與其他動物有所區別的關鍵就在於人類有靈
巧的雙手。因此在機器人領域中,針對類人型雙手臂機器人的動作規
劃研究,也就成為一個重要的議題。本篇論文重點為,發展具有視覺
回授功能、冗餘自由度的模組化七自由度雙手臂機器人,推導其運動
學的解析解,並利用視覺感知功能完成辨識工作桌面物體位置,使動
作規劃器可規劃出夾取環境物體,並適當的運用雙手的優勢-在不互
相碰撞的情況下,可同時夾取兩個物體。並同時透過模擬與實驗測試
該動作規劃器的效果,以使本雙手臂機器人也能做出如同人類般靈巧
的動作。
本系統以兩支七自由度模組化機械手臂作為研究對象,以架構在控
制器區域網路通訊協定 (Controller Area Network, CAN) 的 CANopen 作
為通訊協定。最後加上具有實時作業系統-以確保運算時脈的穩定性
-做為控制命令、動作規劃演算法的運算器。
為具有七自由度的手臂,安裝馬達的部分設計成模組化,可大幅減
少設計不同部位零件所花的時間、增加不同部位零件的可替換性、減
少安裝、配線、維修的複雜度。
傳統上在計算順向、逆向運動學時,使用雅可比 (Jacobian) 矩陣做
關節空間和卡式空間下的解的轉換。然而此兩者間的關係是非線性的,
使用雅可比矩陣會造成解的誤差。並且,由於以雅可比矩陣計算逆運
動學時,需針對多維矩陣運算,故也較使用解析解費時。故推導具七
自由度冗餘關節的手臂的運動學解析解,可使本系統在做順向、逆向
運動學時,能精確、迅速求出關節空間或卡式空間下的解。
最後,結合一具三維環境感測功能的感測器,應用在本雙手臂機器
人上,使雙手臂機器人可完成如人類一般,辨識目標物體位置後夾取
該物體的能力。若桌上有多個物體時,本機器人也具備任務規劃的能
力,以使本機器人可利用存在雙手的優勢,以較快的速度完成夾取所
有物體的任務。
zh_TW
dc.description.abstractHaving dexterous arms makes human different from other creatures. In the field of robotics, research on anthropomorphic becomes an important issue. In this work, we proposed a modularized 7-DoF dual arm robot with 3D visual perception ability. First, we derived the analytical inverse kinematics solution for both arms. Second, visual sensing is also implemented, such that the robot can recognize objects in the environment. Third, a planning algorithm is implemented to grant the robot the ability to plan the order to grasp all objects put on the working table.
We use CANopen as the communication protocol. With real time operating system to make the timer stable, the control command and motion planning algorithm become more stable. Both manipulators in this work are consisted of modularized components, which makes the assembly, wiring, and maintenance faster and more efficient. In addition, it reduces the time spent on designing different parts of the robot, thus makes the maintenance easier. Last but not least, with modularized component, the configuration of the robot can be changed easily.
When dealing with kinematics problem, traditionally numerical method was used to calculate inverse kinematics problem. However, the relationship between Cartesian space and joint space is not linear, using this method, i.e. using Jacobian matrix will cause error. Hence, we proposed an analytical inverse kinematics solution for a new configuration of 7-DoF manipulator of the modularized dual arm robot. With the solution, inverse kinematics problem can be solved faster and more accurate.
At last, with 3D environment sensing ability, making the robot be able to recognize the position of target objects then grasp it like human. Also, when there are several objects put on the working table, the robot can generate the order to grasp objects using the advantage of possessing dual arm, thus makes the grasping task finished faster.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:35:34Z (GMT). No. of bitstreams: 1
ntu-103-R01921004-1.pdf: 11579520 bytes, checksum: e8cd91556db9c369236ba0f4d90df434 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of Contents
誌謝 iii
中文ᄔ要 v
Abstract vii
Contents 1
List of Figures 3
List of Tables 7
1 Introduction 9
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 State-of-the-art Dual Arm Robot . . . . . . . . . . . . . . . . . . 10
1.2.2 Analytical Inverse Kinematics Solution . . . . . . . . . . . . . . 11
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Modularized Dual-Arm Robot 15
2.1 Mechanical Design of Robot Arms . . . . . . . . . . . . . . . . . . . . . 15
2.2 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Kinematics Analysis 31
3.1 Robot Coordinate Configuration . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Foward Kinematics Analysis . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Inverse Kinematics Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 analytical inverse kinematic solution for the left arm . . . . . . . 37
3.3.2 analytical inverse kinematic solution for the right arm . . . . . . 44
3.3.3 singularaty issue . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13.3.4 verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.5 workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 3D Perception 55
4.1 Object Capture System . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Motion Planning 63
5.1 Object grasping planning . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.1 Control structure . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Homing process . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.3 Grasping task planning . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Conclusions and Contributions 73
7 Future Works 75
References 77
VITA 81
dc.language.isoen
dc.subject運動學解析解zh_TW
dc.subject雙手臂動作規劃zh_TW
dc.subject模組化手臂zh_TW
dc.subject3D 環境 感知zh_TW
dc.subject類人型機器人zh_TW
dc.subjectModularized manipulatorsen
dc.subjectanthropomorphic roboten
dc.subject3D visual sensingen
dc.subjectdual arm motion planningen
dc.subjectanalytical kinematics solutionen
dc.title俱三維影像感知與操作功能之模組化七自由度雙手臂機器人zh_TW
dc.titleModular 7 DoF Dual Arm Robot with 3D Visual Perception and Manipulationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏炳郎(Bing-Lang Yan),鄒杰烔(Jie-Tong Zou)
dc.subject.keyword模組化手臂,運動學解析解,雙手臂動作規劃,3D 環境 感知,類人型機器人,zh_TW
dc.subject.keywordModularized manipulators,analytical kinematics solution,dual arm motion planning,3D visual sensing,anthropomorphic robot,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2014-08-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
11.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved