請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陶秘華(Mi-Hua Tao) | |
| dc.contributor.author | I-Jung Lee | en |
| dc.contributor.author | 李逸容 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:35:13Z | - |
| dc.date.available | 2016-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-02 | |
| dc.identifier.citation | 1. Crispe IN. 2011. Liver antigen-presenting cells. Journal of hepatology 54:357-365.
2. Thomson AW, Knolle PA. 2010. Antigen-presenting cell function in the tolerogenic liver environment. Nature reviews. Immunology 10:753-766. 3. Tiegs G, Lohse AW. 2010. Immune tolerance: what is unique about the liver. J Autoimmun 34:1-6. 4. Holz LE, Benseler V, Bowen DG, Bouillet P, Strasser A, O'Reilly L, d'Avigdor WM, Bishop AG, McCaughan GW, Bertolino P. 2008. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 135:989-997. 5. Knolle PA, Limmer A. 2003. Control of immune responses by savenger liver endothelial cells. Swiss medical weekly 133:501-506. 6. Lohse AW, Knolle PA, Bilo K, Uhrig A, Waldmann C, Ibe M, Schmitt E, Gerken G, Meyer Zum Buschenfelde KH. 1996. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110:1175-1181. 7. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. 2008. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47:296-305. 8. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature medicine 6:1348-1354. 9. Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C. 2007. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316:612-616. 10. Wiegard C, Frenzel C, Herkel J, Kallen KJ, Schmitt E, Lohse AW. 2005. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 42:193-199. 11. Kruse N, Neumann K, Schrage A, Derkow K, Schott E, Erben U, Kuhl A, Loddenkemper C, Zeitz M, Hamann A, Klugewitz K. 2009. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3- regulatory T cells suppressing autoimmune hepatitis. Hepatology 50:1904-1913. 12. Berg M, Wingender G, Djandji D, Hegenbarth S, Momburg F, Hammerling G, Limmer A, Knolle P. 2006. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. European journal of immunology 36:2960-2970. 13. Limmer A, Ohl J, Wingender G, Berg M, Jungerkes F, Schumak B, Djandji D, Scholz K, Klevenz A, Hegenbarth S, Momburg F, Hammerling GJ, Arnold B, Knolle PA. 2005. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. European journal of immunology 35:2970-2981. 14. Jenne CN, Kubes P. 2013. Immune surveillance by the liver. Nature immunology 14:996-1006. 15. Gregory SH, Sagnimeni AJ, Wing EJ. 1996. Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. Journal of immunology 157:2514-2520. 16. Ebe Y, Hasegawa G, Takatsuka H, Umezu H, Mitsuyama M, Arakawa M, Mukaida N, Naito M. 1999. The role of Kupffer cells and regulation of neutrophil migration into the liver by macrophage inflammatory protein-2 in primary listeriosis in mice. Pathology international 49:519-532. 17. Breous E, Somanathan S, Vandenberghe LH, Wilson JM. 2009. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50:612-621. 18. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G. 1995. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. Journal of hepatology 22:226-229. 19. Geerts A. 2001. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Seminars in liver disease 21:311-335. 20. Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, Lu L, Qian S. 2004. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40:1312-1321. 21. Jiang G, Yang HR, Wang L, Wildey GM, Fung J, Qian S, Lu L. 2008. Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation 86:1492-1502. 22. Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP. 2004. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. Journal of immunology 172:1009-1017. 23. Sana G, Lombard C, Vosters O, Jazouli N, Andre F, Stephenne X, Smets F, Najimi M, Sokal EM. 2013. Adult human hepatocytes promote CD4+ T cell hyporesponsiveness via interleukin-10 producing allogeneic dendritic cells. Cell transplantation. 24. Tokita D, Sumpter TL, Raimondi G, Zahorchak AF, Wang Z, Nakao A, Mazariegos GV, Abe M, Thomson AW. 2008. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. Journal of hepatology 49:1008-1018. 25. Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, Gonen M, Young JW, DeMatteo RP. 2009. Human liver dendritic cells promote T cell hyporesponsiveness. Journal of immunology 182:1901-1911. 26. Bertolino P, Trescol-Biemont MC, Rabourdin-Combe C. 1998. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. European journal of immunology 28:221-236. 27. Helmy KY, Katschke KJ, Jr., Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M. 2006. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915-927. 28. Inatsu A, Kinoshita M, Nakashima H, Shimizu J, Saitoh D, Tamai S, Seki S. 2009. Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology 49:2044-2054. 29. Das A, Hoare M, Davies N, Lopes AR, Dunn C, Kennedy PT, Alexander G, Finney H, Lawson A, Plunkett FJ, Bertoletti A, Akbar AN, Maini MK. 2008. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. The Journal of experimental medicine 205:2111-2124. 30. Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. 2009. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. The international journal of biochemistry & cell biology 41:467-471. 31. Doherty DG, O'Farrelly C. 2000. Innate and adaptive lymphoid cells in the human liver. Immunological reviews 174:5-20. 32. Crispe IN. 2009. The liver as a lymphoid organ. Annual review of immunology 27:147-163. 33. Nemeth E, Baird AW, O'Farrelly C. 2009. Microanatomy of the liver immune system. Seminars in immunopathology 31:333-343. 34. Parker GA, Picut CA. 2005. Liver immunobiology. Toxicologic pathology 33:52-62. 35. Notas G, Kisseleva T, Brenner D. 2009. NK and NKT cells in liver injury and fibrosis. Clinical immunology 130:16-26. 36. Brennan PJ, Brigl M, Brenner MB. 2013. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nature reviews. Immunology 13:101-117. 37. Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. 2011. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334:101-105. 38. Racanelli V, Rehermann B. 2006. The liver as an immunological organ. Hepatology 43:S54-62. 39. Klugewitz K, Blumenthal-Barby F, Schrage A, Knolle PA, Hamann A, Crispe IN. 2002. Immunomodulatory effects of the liver: deletion of activated CD4+ effector cells and suppression of IFN-gamma-producing cells after intravenous protein immunization. Journal of immunology 169:2407-2413. 40. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R. 1998. Viral immune evasion due to persistence of activated T cells without effector function. The Journal of experimental medicine 188:2205-2213. 41. Wuensch SA, Spahn J, Crispe IN. 2010. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology 52:1068-1077. 42. Derkow K, Muller A, Eickmeier I, Seidel D, Rust Moreira MV, Kruse N, Klugewitz K, Mintern J, Wiedenmann B, Schott E. 2011. Failure of CD4 T-cells to respond to liver-derived antigen and to provide help to CD8 T-cells. PloS one 6:e21847. 43. Qian S, Wang Z, Lee Y, Chiang Y, Bonham C, Fung J, Lu L. 2001. Hepatocyte-induced apoptosis of activated T cells, a mechanism of liver transplant tolerance, is related to the expression of ICAM-1 and hepatic lectin. Transplantation proceedings 33:226. 44. Huang LR, Wohlleber D, Reisinger F, Jenne CN, Cheng RL, Abdullah Z, Schildberg FA, Odenthal M, Dienes HP, van Rooijen N, Schmitt E, Garbi N, Croft M, Kurts C, Kubes P, Protzer U, Heikenwalder M, Knolle PA. 2013. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nature immunology 14:574-583. 45. Kingham TP, Chaudhry UI, Plitas G, Katz SC, Raab J, DeMatteo RP. 2007. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology 45:445-454. 46. Xu L, Yin W, Sun R, Wei H, Tian Z. 2013. Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatology. 47. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. 1998. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591-599. 48. Mattei F, Schiavoni G, Belardelli F, Tough DF. 2001. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. Journal of immunology 167:1179-1187. 49. Lutz MB, Schuler G. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445-449. 50. Granucci F, Vizzardelli C, Virzi E, Rescigno M, Ricciardi-Castagnoli P. 2001. Transcriptional reprogramming of dendritic cells by differentiation stimuli. European journal of immunology 31:2539-2546. 51. You Q, Cheng L, Kedl RM, Ju C. 2008. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48:978-990. 52. Crispe IN. 2003. Hepatic T cells and liver tolerance. Nature reviews. Immunology 3:51-62. 53. Krawitt EL. 2006. Autoimmune hepatitis. The New England journal of medicine 354:54-66. 54. Mieli-Vergani G, Vergani D. 2011. Autoimmune hepatitis. Nature reviews. Gastroenterology & hepatology 8:320-329. 55. Manns MP, Griffin KJ, Sullivan KF, Johnson EF. 1991. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase. The Journal of clinical investigation 88:1370-1378. 56. Vento S, Cainelli F, Renzini C, Concia E. 1997. Autoimmune hepatitis type 2 induced by HCV and persisting after viral clearance. Lancet 350:1298-1299. 57. Kerkar N, Choudhuri K, Ma Y, Mahmoud A, Bogdanos DP, Muratori L, Bianchi F, Williams R, Mieli-Vergani G, Vergani D. 2003. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease. Journal of immunology 170:1481-1489. 58. Nouri-Aria KT, Donaldson PT, Hegarty JE, Eddleston AL, Williams R. 1985. HLA A1-B8-DR3 and suppressor cell function in first-degree relatives of patients with autoimmune chronic active hepatitis. Journal of hepatology 1:235-241. 59. Nouri-Aria KT, Hegarty JE, Alexander GJ, Eddleston AL, Williams R. 1982. Effect of corticosteroids on suppressor-cell activity in 'autoimmune' and viral chronic active hepatitis. The New England journal of medicine 307:1301-1304. 60. Cortesini R, LeMaoult J, Ciubotariu R, Cortesini NS. 2001. CD8+CD28- T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunological reviews 182:201-206. 61. Vento S, Hegarty JE, Bottazzo G, Macchia E, Williams R, Eddleston AL. 1984. Antigen specific suppressor cell function in autoimmune chronic active hepatitis. Lancet 1:1200-1204. 62. Shevach EM, McHugh RS, Piccirillo CA, Thornton AM. 2001. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunological reviews 182:58-67. 63. Senaldi G, Portmann B, Mowat AP, Mieli-Vergani G, Vergani D. 1992. Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis. Archives of disease in childhood 67:1447-1453. 64. Oo YH, Hubscher SG, Adams DH. 2010. Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatology international 4:475-493. 65. Rehermann B, Nascimbeni M. 2005. Immunology of hepatitis B virus and hepatitis C virus infection. Nature reviews. Immunology 5:215-229. 66. Pungpapong S, Kim WR, Poterucha JJ. 2007. Natural history of hepatitis B virus infection: an update for clinicians. Mayo Clinic proceedings 82:967-975. 67. Wright TL, Mamish D, Combs C, Kim M, Donegan E, Ferrell L, Lake J, Roberts J, Ascher NL. 1992. Hepatitis B virus and apparent fulminant non-A, non-B hepatitis. Lancet 339:952-955. 68. Beasley RP, Trepo C, Stevens CE, Szmuness W. 1977. The e antigen and vertical transmission of hepatitis B surface antigen. American journal of epidemiology 105:94-98. 69. McMahon BJ, Alward WL, Hall DB, Heyward WL, Bender TR, Francis DP, Maynard JE. 1985. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. The Journal of infectious diseases 151:599-603. 70. Ribeiro RM, Lo A, Perelson AS. 2002. Dynamics of hepatitis B virus infection. Microbes and infection / Institut Pasteur 4:829-835. 71. McClary H, Koch R, Chisari FV, Guidotti LG. 2000. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. Journal of virology 74:2255-2264. 72. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:25-36. 73. Chu CM, Karayiannis P, Fowler MJ, Monjardino J, Liaw YF, Thomas HC. 1985. Natural history of chronic hepatitis B virus infection in Taiwan: studies of hepatitis B virus DNA in serum. Hepatology 5:431-434. 74. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. 1990. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proceedings of the National Academy of Sciences of the United States of America 87:6599-6603. 75. Chang MH, Hwang LY, Hsu HC, Lee CY, Beasley RP. 1988. Prospective study of asymptomatic HBsAg carrier children infected in the perinatal period: clinical and liver histologic studies. Hepatology 8:374-377. 76. Tsai SL, Chen PJ, Lai MY, Yang PM, Sung JL, Huang JH, Hwang LH, Chang TH, Chen DS. 1992. Acute exacerbations of chronic type B hepatitis are accompanied by increased T cell responses to hepatitis B core and e antigens. Implications for hepatitis B e antigen seroconversion. The Journal of clinical investigation 89:87-96. 77. Chu CM, Liaw YF. 1987. Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology 92:220-225. 78. Yim HJ, Lok AS. 2006. Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology 43:S173-181. 79. Lok AS, Lai CL, Wu PC, Leung EK, Lam TS. 1987. Spontaneous hepatitis B e antigen to antibody seroconversion and reversion in Chinese patients with chronic hepatitis B virus infection. Gastroenterology 92:1839-1843. 80. Realdi G, Alberti A, Rugge M, Bortolotti F, Rigoli AM, Tremolada F, Ruol A. 1980. Seroconversion from hepatitis B e antigen to anti-HBe in chronic hepatitis B virus infection. Gastroenterology 79:195-199. 81. Liaw YF, Tai DI, Chu CM, Chen TJ. 1988. The development of cirrhosis in patients with chronic type B hepatitis: a prospective study. Hepatology 8:493-496. 82. Liaw YF, Lin DY, Chen TJ, Chu CM. 1989. Natural course after the development of cirrhosis in patients with chronic type B hepatitis: a prospective study. Liver 9:235-241. 83. Lok AS, Heathcote EJ, Hoofnagle JH. 2001. Management of hepatitis B: 2000--summary of a workshop. Gastroenterology 120:1828-1853. 84. Liaw YF, Tai DI, Chu CM, Pao CC, Chen TJ. 1987. Acute exacerbation in chronic type B hepatitis: comparison between HBeAg and antibody-positive patients. Hepatology 7:20-23. 85. Lok AS, Lai CL. 1990. Acute exacerbations in Chinese patients with chronic hepatitis B virus (HBV) infection. Incidence, predisposing factors and etiology. Journal of hepatology 10:29-34. 86. Zarski JP, Marcellin P, Cohard M, Lutz JM, Bouche C, Rais A. 1994. Comparison of anti-HBe-positive and HBe-antigen-positive chronic hepatitis B in France. French Multicentre Group. Journal of hepatology 20:636-640. 87. Papatheodoridis GV, Dimou E, Dimakopoulos K, Manolakopoulos S, Rapti I, Kitis G, Tzourmakliotis D, Manesis E, Hadziyannis SJ. 2005. Outcome of hepatitis B e antigen-negative chronic hepatitis B on long-term nucleos(t)ide analog therapy starting with lamivudine. Hepatology 42:121-129. 88. Papatheodoridis GV, Manesis E, Hadziyannis SJ. 2001. The long-term outcome of interferon-alpha treated and untreated patients with HBeAg-negative chronic hepatitis B. Journal of hepatology 34:306-313. 89. Ferrari C, Penna A, Bertoletti A, Valli A, Antoni AD, Giuberti T, Cavalli A, Petit MA, Fiaccadori F. 1990. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. Journal of immunology 145:3442-3449. 90. Rehermann B, Fowler P, Sidney J, Person J, Redeker A, Brown M, Moss B, Sette A, Chisari FV. 1995. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. The Journal of experimental medicine 181:1047-1058. 91. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. 2003. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal of virology 77:68-76. 92. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. 1999. Viral clearance without destruction of infected cells during acute HBV infection. Science 284:825-829. 93. Reignat S, Webster GJ, Brown D, Ogg GS, King A, Seneviratne SL, Dusheiko G, Williams R, Maini MK, Bertoletti A. 2002. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. The Journal of experimental medicine 195:1089-1101. 94. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. 2003. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. Journal of virology 77:4911-4927. 95. Wherry EJ, Blattman JN, Ahmed R. 2005. Low CD8 T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. Journal of virology 79:8960-8968. 96. Rehermann B. 2007. Chronic infections with hepatotropic viruses: mechanisms of impairment of cellular immune responses. Seminars in liver disease 27:152-160. 97. Wang Y, Swiecki M, Cella M, Alber G, Schreiber RD, Gilfillan S, Colonna M. 2012. Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection. Cell host & microbe 11:631-642. 98. Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M, Chisari FV. 2010. Immune effectors required for hepatitis B virus clearance. Proceedings of the National Academy of Sciences of the United States of America 107:798-802. 99. Isogawa M, Furuichi Y, Chisari FV. 2005. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity 23:53-63. 100. Geng L, Jiang G, Fang Y, Dong S, Xie H, Chen Y, Shen M, Zheng S. 2006. B7-H1 expression is upregulated in peripheral blood CD14+ monocytes of patients with chronic hepatitis B virus infection, which correlates with higher serum IL-10 levels. Journal of viral hepatitis 13:725-733. 101. Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, Crotty S, von Herrath MG. 2006. Resolution of a chronic viral infection after interleukin-10 receptor blockade. The Journal of experimental medicine 203:2461-2472. 102. Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kuipers EJ, Kusters JG, Janssen HL. 2005. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 41:771-778. 103. Xu D, Fu J, Jin L, Zhang H, Zhou C, Zou Z, Zhao JM, Zhang B, Shi M, Ding X, Tang Z, Fu YX, Wang FS. 2006. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. Journal of immunology 177:739-747. 104. Chang CH, Guerder S, Hong SC, van Ewijk W, Flavell RA. 1996. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 4:167-178. 105. Ting JP, Trowsdale J. 2002. Genetic control of MHC class II expression. Cell 109 Suppl:S21-33. 106. LeibundGut-Landmann S, Waldburger JM, Krawczyk M, Otten LA, Suter T, Fontana A, Acha-Orbea H, Reith W. 2004. Mini-review: Specificity and expression of CIITA, the master regulator of MHC class II genes. European journal of immunology 34:1513-1525. 107. Herkel J, Jagemann B, Wiegard C, Lazaro JF, Lueth S, Kanzler S, Blessing M, Schmitt E, Lohse AW. 2003. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes. Hepatology 37:1079-1085. 108. Hodge JW, Abrams S, Schlom J, Kantor JA. 1994. Induction of antitumor immunity by recombinant vaccinia viruses expressing B7-1 or B7-2 costimulatory molecules. Cancer research 54:5552-5555. 109. Yang G, Hellstrom KE, Hellstrom I, Chen L. 1995. Antitumor immunity elicited by tumor cells transfected with B7-2, a second ligand for CD28/CTLA-4 costimulatory molecules. Journal of immunology 154:2794-2800. 110. Martin BK, Frelinger JG, Ting JP. 1999. Combination gene therapy with CD86 and the MHC class II transactivator in the control of lung tumor growth. Journal of immunology 162:6663-6670. 111. Sun J, Tumurbaatar B, Jia J, Diao H, Bodola F, Lemon SM, Tang W, Bowen DG, McCaughan GW, Bertolino P, Chan TS. 2005. Parenchymal expression of CD86/B7.2 contributes to hepatitis C virus-related liver injury. Journal of virology 79:10730-10739. 112. Barnden MJ, Allison J, Heath WR, Carbone FR. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunology and cell biology 76:34-40. 113. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17-27. 114. Trautmann T, Kozik JH, Carambia A, Richter K, Lischke T, Schwinge D, Mittrucker HW, Lohse AW, Oxenius A, Wiegard C, Herkel J. 2014. CD4+ T-cell help is required for effective CD8+ T cell-mediated resolution of acute viral hepatitis in mice. PloS one 9:e86348. 115. Wiegard C, Wolint P, Frenzel C, Cheruti U, Schmitt E, Oxenius A, Lohse AW, Herkel J. 2007. Defective T helper response of hepatocyte-stimulated CD4 T cells impairs antiviral CD8 response and viral clearance. Gastroenterology 133:2010-2018. 116. He XS, Chen HS, Chu K, Rivkina M, Robinson WS. 1996. Costimulatory protein B7-1 enhances the cytotoxic T cell response and antibody response to hepatitis B surface antigen. Proceedings of the National Academy of Sciences of the United States of America 93:7274-7278. 117. McGrory WJ, Bautista DS, Graham FL. 1988. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163:614-617. 118. La Motte RN, Rubin MA, Barr E, Leiden JM, Bluestone JA, Mokyr MB. 1996. Therapeutic effectiveness of the immunity elicited by P815 tumor cells engineered to express the B7-2 costimulatory molecule. Cancer immunology, immunotherapy : CII 42:161-169. 119. Martin-Fontecha A, Cavallo F, Bellone M, Heltai S, Iezzi G, Tornaghi P, Nabavi N, Forni G, Dellabona P, Casorati G. 1996. Heterogeneous effects of B7-1 and B7-2 in the induction of both protective and therapeutic anti-tumor immunity against different mouse tumors. European journal of immunology 26:1851-1859. 120. Han YP, Li J, Jiang LF, Xu QQ, Liu B, Dong L, Chen N, Kong LH, Xie FR, Huang ZH. 2013. [Hepatitis B e antigen from chronic hepatitis B patients induces Th1/Th2 cytokine imbalance in vitro]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 21:584-589. 121. Han Y, Li J, Jiang L, Xu Q, Liu B, Jin K, Liu Y, Huang Z. 2013. Regulation of B7-H1 expression on peripheral monocytes and IFN-gamma secretion in T lymphocytes by HBeAg. Cellular immunology 283:25-30. 122. Op den Brouw ML, Binda RS, van Roosmalen MH, Protzer U, Janssen HL, van der Molen RG, Woltman AM. 2009. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology 126:280-289. 123. Barboza L, Salmen S, Goncalves L, Colmenares M, Peterson D, Montes H, Cartagirone R, Gutierrez Mdel C, Berrueta L. 2007. Antigen-induced regulatory T cells in HBV chronically infected patients. Virology 368:41-49. 124. Hyodo N, Nakamura I, Imawari M. 2004. Hepatitis B core antigen stimulates interleukin-10 secretion by both T cells and monocytes from peripheral blood of patients with chronic hepatitis B virus infection. Clinical and experimental immunology 135:462-466. 125. Washburn ML, Kovalev GI, Koroleva E, Fu YX, Su L. 2010. LIGHT induces distinct signals to clear an AAV-expressed persistent antigen in the mouse liver and to induce liver inflammation. PloS one 5:e10585. 126. Breous E, Somanathan S, Bell P, Wilson JM. 2011. Inflammation promotes the loss of adeno-associated virus-mediated transgene expression in mouse liver. Gastroenterology 141:348-357, 357.e341-343. 127. Gil-Farina I, Di Scala M, Vanrell L, Olague C, Vales A, High KA, Prieto J, Mingozzi F, Gonzalez-Aseguinolaza G. 2013. IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression. PloS one 8:e67748. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57111 | - |
| dc.description.abstract | Liver is considered as a unique lymphoid organ that favors immune tolerance which are highly associated with the tolerogenic properties of hepatic antigen-presenting cells and immunoregulatory molecules. The unique hepatic regulatory mechanisms prevent induction of immunity against non-harmful foreign antigens, such as gut-derived nutrients or bacterial degradation products in the portal venous blood. However, liver tolerogenic environment may also contribute to the chronicity of viral infections in the liver. Interestingly, under conditions of local inflammation induced by some bactiral and acute viral infections, liver tolerance can be overcome to favor induction of immunity, including upregulation of both class I and class II major histocompatibility complexes (MHC) and costimulatory molecules, on hepatocytes and antigen presenting cells. The subsequent expression of adhesion molecules and chemokines recruit and activate immune cells to the liver to help clear infecting pathogens. In this study, we hypothesize that hepatic expression of class II MHC and the costimulatory molecule CD86 may create an inflammatory environment that could overcome liver tolergenic property and provid help for lymphocyte activation as well as viral clearance.
To address this hypothesis, we used recombinant adeno-associated viral vector (rAAV) to deliver CIITA, which is the master regulator of class II MHC molecules, and recombinant adenoviral vector (rAd) to deliver CD86. Mice transduced with rAAV/CIITA led to expression of CIITA and class II MHC in most of the hepatocytes. Similarly, mice transduced with rAd/CD86 resulted in CD86 expression in most of the hepatocytes, which led to proliferation and activation of hepatic lymphocytes, in particular CD8+ T lymphocytes. Since a high dose of rAd/CD86 caused severe liver damage, dose titration experiments were performed to identify an optimal dose which can induce hepatic inflammation but avoid extensive damage of hepatocytes. We used two model systems, one expressing hepatitis B viral proteins and the other ovalbumin (OVA), to address how local inflammation, induced by class II MHC and CD86, affects establishment of chronic viral infections in the liver. In the firs model of HBV infection, mice were infected by AAV/HBVp-, which produced all HBV proteins except polymerase, and treated with CIITA alone, CD86 alone or CIITA plus CD86. Treatment of CIITA alone slightly reduced the serum level of HBeAg but had no effect on serum HBsAg and hepatic HBcAg. Treatment of CD86 significantly reduced all viral proteins, in particular HBeAg and HBcAg. Importantly, a combination treatment of CIITA and CD86 showed the most significant effect, not only reducing all viral proteins but also resulting in complete clearance of HBsAg and HBeAg in some treated mice. Correspondingly, treatment of CD86 alone or a combination treatment of CD86 and CIITA increased the numbers of both CD4+ and CD8+ T lymphocytes in the liver and the spleen. These T cells showed increased activation phenotype, which was stronger in CD8+ T cells than in CD4+ T cells. IFNg ELISpot assay was used to determine the role of virus-specific T cell in viral antigen suppression mediated by CIITA and/or CD86. However, we failed to detect virus-specific T cells in any of the treated groups. To analyze the activation phenotypes of antigen-specific T cells in the liver environment, we used another murine model system that express OVA in the liver and adoptively transferred OVA-specific CD8+ T cells (OT-I) and CD4+ T cells (OT-II), isolated from their respective T cell receptor transgenic mice. This approach allowed us to track the phenotypic changes of T cells that encounter their specific antigens in the liver under various inflammatory conditions. Our data showed that OT-I T cells exhibited extensive proliferation and activation in mice expressing hepatic OVA protein. Local inflammation induced by expression of CIITA and/or CD86 did not further enhance proliferation and activation of OT-I cells. In contrast, the proliferation and activation of OT-II T cells to hepatic antigens was much weaker than that of OT-I cells and was dependent upon the local inflammation environment generated by CD86 or CIITA plus CD86. Furthermore, the transferred OT-I cells distributed mainly in the liver while most of the OT-II cells were found in the spleen. These results suggest that in early hepatic viral infection antigen-specific CD8+ T cells in the liver can be readily induced once they encounter their cognate viral antigens while activation of antigen-specific CD4+ cells required additional signaling that can be provided by appropriate local inflammation. Together, this study demonstrated that an appropriate liver inflammatory environment can be induced by transfecting and upregulating expression of CD86 and CIITA in the liver. This inflammatory environment enhances proliferation and activation of intrahepatic lymphocyte, in particular CD8+ T cells, leading to suppression of viral antigens in the early stage of viral infection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:35:13Z (GMT). No. of bitstreams: 1 ntu-103-R01424008-1.pdf: 3875997 bytes, checksum: b473b9deb938e549f287cf260cfbffc3 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 vi 圖目錄 ix 第一章、緒論 1 第一節、肝臟免疫環境 1 1.1.1 肝臟免疫抑制環境 1 1.1.2 肝臟淋巴球細胞組成及後天免疫反應 4 1.2.1 肝臟發炎環境 4 1.2.2 疾病引起之肝炎 5 第二節、B型肝炎免疫反應 6 2.1.1 B型肝炎病毒 6 2.1.2 B型肝炎病毒感染臨床研究 6 2.1.3 後天免疫淋巴球細胞在慢性B型肝炎病毒感染扮演的角色 8 第三節、實驗目的與設計 10 第二章、實驗方法與材料 12 1.重組腺相關病毒質體製備 12 2. 細胞培養 13 3. Lipofectamin細胞轉染 14 4. 細胞蛋白萃取及定量 15 5. 西方墨點法 15 6. 重組腺相關病毒製備 15 7. 重組腺病毒製備 16 8. 體外病毒感染 17 9. 實驗小鼠 17 10. 小鼠實驗病毒感染方式 17 11. 肝細胞分離 18 12. 淋巴球細胞分離 18 13. CD4+ T cell及CD8+ T cell純化 18 14. CFSE染色及Adoptive transfer 19 15. ELISpot 19 16. 流式細胞儀分析 20 17. 免疫螢光染色 20 18. 免疫化學組織染色 21 19. B型肝炎病毒血清抗原和生化標記分析 21 20. 統計 21 第三章、實驗結果 22 第一節、構築表現CIITA的腺相關病毒載體 22 1.1.1 構築表現CIITA的腺相關病毒質體 22 1.1.2 確認重組腺相關病毒質體CIITA之表現 23 1.1.3 確認帶有CIITA質體刺激MHC classII表現之能力 23 1.2.1 製作AAV9/CIITA病毒載體 24 1.2.2 確認活體內重組AAV載體CIITA之表現 24 1.2.3 確認活體內重組AAV載體刺激MHC classII表現之能力 25 第二節、構築表現CD86的腺病毒載體 26 2.1.1 製作Ad/CD86病毒載體 26 2.1.2 確認重組腺病毒載體CD86之表現 27 2.2.1 確認活體內重組腺病毒載體CD86之表現 27 2.2.2 肝細胞表現CD86對肝臟免疫環境之影響 28 第三節、輕度發炎環境對慢性B型肝炎病毒感染之影響 30 3.1.1 肝臟表現CIITA及CD86對慢性B型肝炎病毒感染治療效果 31 3.2.1 B型肝炎病毒感染初期表現CIITA及CD86對病毒抗原表現之影響 32 3.2.2 B型肝炎病毒感染初期表現CIITA及CD86對淋巴球細胞之影響 32 第四節、提升肝臟發炎程度對慢性B型肝炎病毒感染之影響 35 4.1.1 Ad/CD86使用劑量對肝臟發炎環境及病毒抗原表現量之影響 35 第五節、肝臟發炎環境對慢性B型肝炎病毒感染之影響 38 5.1.1 肝臟表現CIITA及CD86對慢性B型肝炎初期之影響 39 5.1.2 肝臟表現CIITA及CD86初期對淋巴球細胞之影響 40 5.2.1肝臟表現CIITA及CD86對慢性B型肝炎中期之影響 42 5.2.2 肝臟表現CIITA及CD86中期對淋巴球細胞之影響 43 5.3.1肝臟表現CIITA及CD86對慢性B型肝炎晚期之影響 46 5.3.2 肝臟表現CIITA及CD86晚期對淋巴球細胞之影響 47 5.4.1 肝臟表現CIITA及CD86對B型肝炎病毒專一性淋巴球細胞影響 49 第六節、肝臟發炎環境對adoptive transferred cell之影響 53 6.1.1 肝臟表現CIITA及CD86初期對淋巴球細胞之影響 54 6.1.2 肝臟表現CIITA及CD86初期對OT-I及OT-II細胞之影響 57 第四章、討論 61 第五章、參考資料 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 協同刺激分子 | zh_TW |
| dc.subject | 淋巴球T細胞活化 | zh_TW |
| dc.subject | 慢性病毒感染 | zh_TW |
| dc.subject | 第二型主要組織相容性複合體 | zh_TW |
| dc.subject | 肝臟發炎環境 | zh_TW |
| dc.subject | chronic viral infection | en |
| dc.subject | liver inflammation | en |
| dc.subject | T lymphocytes activation | en |
| dc.subject | CD86 | en |
| dc.subject | MHC class II | en |
| dc.title | 局部發炎環境對肝臟T細胞反應及B型肝炎病毒感染之影響 | zh_TW |
| dc.title | Effect of Local Inflammation on Hepatic T cell Responses and Outcome of Hepatitis B Virus infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雅倩(Ya-Chien Yang),莊雅惠(Ya-Hui Chuang) | |
| dc.subject.keyword | 肝臟發炎環境,慢性病毒感染,淋巴球T細胞活化,協同刺激分子,第二型主要組織相容性複合體, | zh_TW |
| dc.subject.keyword | liver inflammation,chronic viral infection,T lymphocytes activation,CD86,MHC class II, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
