請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧哲明(Che-Ming Teng),潘秀玲(Shiow-Lin Pan) | |
| dc.contributor.author | Ho-Ying Wu | en |
| dc.contributor.author | 吳和穎 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:34:18Z | - |
| dc.date.available | 2024-12-31 | |
| dc.date.copyright | 2014-10-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-04 | |
| dc.identifier.citation | Ai J, Wang Y, Dar JA, Liu J, Liu L, Nelson JB, et al. (2009a). HDAC6 Regulates Androgen Receptor Hypersensitivity and Nuclear Localization via Modulating Hsp90 Acetylation in Castration-Resistant Prostate Cancer. Molecular Endocrinology 23(12): 1963-1972.
Ai J, Wang Y, Dar JA, Liu J, Liu L, Nelson JB, et al. (2009b). HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol 23(12): 1963-1972. Aldana-Masangkay GI, Sakamoto KM (2011). The role of HDAC6 in cancer. Journal of biomedicine & biotechnology 2011: 875824. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Current biology : CB 7(4): 261-269. Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, et al. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. The EMBO journal 13(7): 1610-1619. Altomare DA, Testa JR (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50): 7455-7464. Ashkenazi A (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature reviews. Cancer 2(6): 420-430. Bai D, Ueno L, Vogt PK (2009). Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. International journal of cancer. Journal international du cancer 125(12): 2863-2870. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, et al. (2005). Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. The Journal of biological chemistry 280(29): 26729-26734. Balk SP, Knudsen KE (2008). AR, the cell cycle, and prostate cancer. Nuclear receptor signaling 6: e001. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF (2008). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26(2): 242-245. Blagosklonny MV (2002). Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16(4): 455-462. Boatright KM, Salvesen GS (2003). Mechanisms of caspase activation. Current opinion in cell biology 15(6): 725-731. Bose P, Dai Y, Grant S (2014). Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacology & therapeutics. Bruserud O, Stapnes C, Ersvaer E, Gjertsen BT, Ryningen A (2007). Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell. Current pharmaceutical biotechnology 8(6): 388-400. Cano LQ, Lavery DN, Bevan CL (2013). Mini-review: Foldosome regulation of androgen receptor action in prostate cancer. Molecular and cellular endocrinology 369(1-2): 52-62. Carter BS, Epstein JI, Isaacs WB (1990). ras gene mutations in human prostate cancer. Cancer research 50(21): 6830-6832. Catalona WJ, Richie JP, Ahmann FR, Hudson MA, Scardino PT, Flanigan RC, et al. (1994). Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. The Journal of urology 151(5): 1283-1290. Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, et al. (2007). Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer research 67(11): 5318-5327. Chou TC (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer research 70(2): 440-446. Clarke PG (1990). Developmental cell death: morphological diversity and multiple mechanisms. Anatomy and embryology 181(3): 195-213. Coleman ML, Marshall CJ, Olson MF (2004). RAS and RHO GTPases in G1-phase cell-cycle regulation. Nature reviews. Molecular cell biology 5(5): 355-366. Conn PM, Crowley WF, Jr. (1991). Gonadotropin-releasing hormone and its analogues. The New England journal of medicine 324(2): 93-103. Dallavalle S, Pisano C, Zunino F (2012). Development and therapeutic impact of HDAC6-selective inhibitors. Biochemical pharmacology 84(6): 756-765. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2): 231-241. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417(6892): 949-954. Davis JM, Navolanic PM, Weinstein-Oppenheimer CR, Steelman LS, Hu W, Konopleva M, et al. (2003). Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clinical cancer research : an official journal of the American Association for Cancer Research 9(3): 1161-1170. Degterev A, Yuan J (2008). Expansion and evolution of cell death programmes. Nature reviews. Molecular cell biology 9(5): 378-390. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes & development 12(22): 3499-3511. Dumesic PA, Scholl FA, Barragan DI, Khavari PA (2009). Erk1/2 MAP kinases are required for epidermal G2/M progression. The Journal of cell biology 185(3): 409-422. Feldman BJ, Feldman D (2001). The development of androgen-independent prostate cancer. Nature reviews. Cancer 1(1): 34-45. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. (2012). Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. The lancet oncology 13(10): 983-992. Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, et al. (2003). Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Molecular cancer therapeutics 2(10): 971-984. George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F, et al. (2005). Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 105(4): 1768-1776. Gioeli D, Mandell JW, Petroni GR, Frierson HF, Jr., Weber MJ (1999). Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer research 59(2): 279-284. Glozak MA, Sengupta N, Zhang X, Seto E (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15-23. Gong K, Li W (2011). Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma. Free radical biology & medicine 51(12): 2259-2271. Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S, et al. (2000). Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. The Journal of biological chemistry 275(32): 24500-24505. Hayne C, Tzivion G, Luo Z (2000). Raf-1/MEK/MAPK pathway is necessary for the G2/M transition induced by nocodazole. The Journal of biological chemistry 275(41): 31876-31882. He K, Zheng X, Zhang L, Yu J (2013). Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Molecular cancer therapeutics 12(11): 2559-2568. Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, et al. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 14(23): 7940-7946. Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (2013). Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer treatment reviews 39(4): 375-387. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001). Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer research 61(10): 4003-4009. Husain I, Mohler JL, Seigler HF, Besterman JM (1994). Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer research 54(2): 539-546. Jemal A, Siegel R, Xu J, Ward E (2010). Cancer statistics, 2010. CA: a cancer journal for clinicians 60(5): 277-300. Jhaveri K, Taldone T, Modi S, Chiosis G (2012). Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochimica et biophysica acta 1823(3): 742-755. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England journal of medicine 363(5): 411-422. Karlsson-Rosenthal C, Millar JB (2006). Cdc25: mechanisms of checkpoint inhibition and recovery. Trends in cell biology 16(6): 285-292. Kim HJ, Bae SC (2011). Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. American journal of translational research 3(2): 166-179. Knipe DM, Cliffe A (2008). Chromatin control of herpes simplex virus lytic and latent infection. Nature reviews. Microbiology 6(3): 211-221. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, et al. (2005). HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular cell 18(5): 601-607. Kurosu T, Takahashi Y, Fukuda T, Koyama T, Miki T, Miura O (2005). p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide. Apoptosis : an international journal on programmed cell death 10(5): 1111-1120. Lakhani SA, Masud A, Kuida K, Porter GA, Jr., Booth CJ, Mehal WZ, et al. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311(5762): 847-851. Lange BM, Bachi A, Wilm M, Gonzalez C (2000). Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. The EMBO journal 19(6): 1252-1262. Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, et al. (1998). The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer research 58(24): 5667-5672. Li J, Yuan J (2008). Caspases in apoptosis and beyond. Oncogene 27(48): 6194-6206. Liao CH, Liu SP, Pu YS, Huang CY, Yu HJ, Chen J (2001). Effect of percent free prostate-specific antigen measurement on improving the specificity of serum prostate-specific antigen testing in Taiwanese patients. Journal of the Formosan Medical Association = Taiwan yi zhi 100(2): 113-119. Liu Y, Shepherd EG, Nelin LD (2007). MAPK phosphatases--regulating the immune response. Nature reviews. Immunology 7(3): 202-212. Lonergan PE, Tindall DJ (2011). Androgen receptor signaling in prostate cancer development and progression. Journal of carcinogenesis 10: 20. Lundberg AS, Weinberg RA (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Molecular and cellular biology 18(2): 753-761. Maira SM, Galetic I, Brazil DP, Kaech S, Ingley E, Thelen M, et al. (2001). Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294(5541): 374-380. Maloney A, Workman P (2002). HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert opinion on biological therapy 2(1): 3-24. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, et al. (2003). Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. The Journal of biological chemistry 278(51): 51786-51795. Matouk CC, Marsden PA (2008). Epigenetic regulation of vascular endothelial gene expression. Circulation research 102(8): 873-887. Mayo LD, Donner DB (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States of America 98(20): 11598-11603. McCall P, Witton CJ, Grimsley S, Nielsen KV, Edwards J (2008). Is PTEN loss associated with clinical outcome measures in human prostate cancer? British journal of cancer 99(8): 1296-1301. McCarthy M (2013). Evidence does not support routine PSA testing, say experts. Bmj 346: f2982. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta 1773(8): 1263-1284. Meloche S, Pouyssegur J (2007). The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26(22): 3227-3239. Mettlin C, Jones G, Averette H, Gusberg SB, Murphy GP (1993). Defining and updating the American Cancer Society guidelines for the cancer-related checkup: prostate and endometrial cancers. CA: a cancer journal for clinicians 43(1): 42-46. Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, et al. (2011). HSP90 Inhibition Is Effective in Breast Cancer: A Phase II Trial of Tanespimycin (17-AAG) Plus Trastuzumab in Patients with HER2-Positive Metastatic Breast Cancer Progressing on Trastuzumab. Clinical Cancer Research 17(15): 5132-5139. Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H, et al. (1998). Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proceedings of the National Academy of Sciences of the United States of America 95(7): 3537-3542. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999). Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. The Biochemical journal 344 Pt 2: 427-431. Neckers L, Trepel JB (2014). Stressing the development of small molecules targeting HSP90. Clinical cancer research : an official journal of the American Association for Cancer Research 20(2): 275-277. Neckers L, Workman P (2012). Hsp90 molecular chaperone inhibitors: are we there yet? Clinical cancer research : an official journal of the American Association for Cancer Research 18(1): 64-76. Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, et al. (1993). Serum prostate-specific antigen in a community-based population of healthy men. Establishment of age-specific reference ranges. JAMA : the journal of the American Medical Association 270(7): 860-864. Parker CC, Pascoe S, Chodacki A, O'Sullivan JM, Germa JR, O'Bryan-Tear CG, et al. (2013). A randomized, double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. European urology 63(2): 189-197. Pelengaris S, Khan M, Evan G (2002). c-MYC: more than just a matter of life and death. Nature reviews. Cancer 2(10): 764-776. Peng CL, Guo W, Ji T, Ren T, Yang Y, Li DS, et al. (2009). Sorafenib induces growth inhibition and apoptosis in human synovial sarcoma cells via inhibiting the RAF/MEK/ERK signaling pathway. Cancer biology & therapy 8(18): 1729-1736. Peterson LB, Blagg BS (2010). Click chemistry to probe Hsp90: Synthesis and evaluation of a series of triazole-containing novobiocin analogues. Bioorganic & medicinal chemistry letters 20(13): 3957-3960. Peyssonnaux C, Provot S, Felder-Schmittbuhl MP, Calothy G, Eychene A (2000). Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways. Molecular and cellular biology 20(19): 7068-7079. Philp LK, Butler MS, Hickey TE, Butler LM, Tilley WD, Day TK (2013). SGTA: a new player in the molecular co-chaperone game. Hormones & cancer 4(6): 343-357. Pierorazio PM, Walsh PC, Partin AW, Epstein JI (2013). Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU international 111(5): 753-760. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, et al. (2000). Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. The Journal of biological chemistry 275(15): 10761-10766. Rushworth LK, Hindley AD, O'Neill E, Kolch W (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Molecular and cellular biology 26(6): 2262-2272. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, et al. (2012). Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119(11): 2579-2589. Sato S, Fujita N, Tsuruo T (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America 97(20): 10832-10837. Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD (2004). Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocrine-related cancer 11(3): 459-476. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. The New England journal of medicine 367(13): 1187-1197. Schleithoff C, Voelter-Mahlknecht S, Dahmke IN, Mahlknecht U (2012). On the epigenetics of vascular regulation and disease. Clinical epigenetics 4(1): 7. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, et al. (2007). An acetylation site in the middle domain of Hsp90 regulates chaperone function. Molecular cell 25(1): 151-159. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes & development 14(19): 2501-2514. Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sanchez-Madrid F (2004). HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20(4): 417-428. Shabason JE, Tofilon PJ, Camphausen K (2010). HDAC inhibitors in cancer care. Oncology 24(2): 180-185. Siegel R, Ma J, Zou Z, Jemal A (2014). Cancer statistics, 2014. CA: a cancer journal for clinicians 64(1): 9-29. Silvera D, Formenti SC, Schneider RJ (2010). Translational control in cancer. Nature reviews. Cancer 10(4): 254-266. Sim HG, Lim KH, Tay MH, Chong KT, Chiong E (2013). Guidelines on management of prostate cancer. Annals of the Academy of Medicine, Singapore 42(4): 190-199. Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nature cell biology 2(9): 672-676. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA (2004). JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18(2): 189-218. Taipale M, Jarosz DF, Lindquist S (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature reviews. Molecular cell biology 11(7): 515-528. Taneja SS (2013). Re: screening for prostate cancer with prostate-specific antigen testing: american society of clinical oncology provisional clinical opinion. The Journal of urology 189(2): 527. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer cell 18(1): 11-22. Taylor RC, Cullen SP, Martin SJ (2008). Apoptosis: controlled demolition at the cellular level. Nature reviews. Molecular cell biology 9(3): 231-241. Vivanco I, Sawyers CL (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature reviews. Cancer 2(7): 489-501. Wang XS, Shankar S, Dhanasekaran SM, Ateeq B, Sasaki AT, Jing X, et al. (2011). Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer discovery 1(1): 35-43. Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. (2008). Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. British journal of cancer 98(3): 604-610. West AC, Johnstone RW (2014). New and emerging HDAC inhibitors for cancer treatment. The Journal of clinical investigation 124(1): 30-39. Witt O, Deubzer HE, Milde T, Oehme I (2009). HDAC family: What are the cancer relevant targets? Cancer letters 277(1): 8-21. Workman P, Burrows F, Neckers L, Rosen N (2007). Drugging the cancer chaperone HSP90 combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann Ny Acad Sci 1113: 202-216. Wu Y, Zhou BP (2007). Kinases meet at TSC. Cell research 17(12): 971-973. Xu WS, Parmigiani RB, Marks PA (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26(37): 5541-5552. Xu Y, Villalona-Calero MA (2002). Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 13(12): 1841-1851. Yan J, Roy S, Apolloni A, Lane A, Hancock JF (1998). Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. The Journal of biological chemistry 273(37): 24052-24056. Yan MS, Matouk CC, Marsden PA (2010). Epigenetics of the vascular endothelium. Journal of applied physiology 109(3): 916-926. Yang W, Zhang Y, Li Y, Wu Z, Zhu D (2007). Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. The Journal of biological chemistry 282(6): 3799-3808. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, et al. (1999). Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401(6749): 173-177. You JS, Jones PA (2012). Cancer genetics and epigenetics: two sides of the same coin? Cancer cell 22(1): 9-20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57076 | - |
| dc.description.abstract | 國人十大死因中癌症致死率始終居高不下,而前列腺癌為男性癌症死亡率中的第七位,雖然一開始給予賀爾蒙療法可以讓前列腺癌獲得有效的控制,但是病患通常會在18~24個月有復發形成castration-resistant prostate cancer (CRPC),其中與過度活化HDAC與Hsp90蛋白有關。因此本篇論文目的為評估一個新合成的HDAC與Hsp90雙重抑制劑MPT0G314對於前列腺癌的抗癌機轉。實驗結果顯示,MPT0G314相較於已核准上市的HDAC抑制劑SAHA有相當的pan-HDAC抑制活性,且擁有比17AAG強的Hsp90抑制效果,並利用fluorogenic HDAC assay kit偵測MPT0G314對於不同HDAC isoforms的抑制力,顯示MPT0G314選擇性抑制HDAC6的能力相對於抑制其他Class I HDAC isoforms有5~19倍的優勢,且利用西方墨點法也發現MPT0G314對於HDAC6 biomarker (Ac-tubulin) 有呈濃度依賴性增加蛋白表現,相對的MPT0G314只有在高濃度(10μM)才可以增加p21, AcH3蛋白表現,證實MPT0G314雖然為一個pan-HDAC抑制劑,卻特別具有良好的HDAC6選擇抑制的能力。進一步實驗證實MPT0G314可以在12小時誘發cleaved PARP,卻在24小時才有caspase 9, caspase 3的活化,暗示MPT0G314可能可以透過caspase-independent pathway誘發cleaved PARP。接著也發現MPT0G314可以透過多條路徑干擾前列腺癌細胞生長,包括: (1) 抑制Akt/mTOR 4E-BP1/eIF4E路徑或者Akt/mTOR p70S6K路徑抑制癌細胞合成蛋白,(2) 抑制MEK/ERK路徑並直接或間接抑制c-MYC蛋白表現,最後抑制survivin並防止survivin抑制caspases,(3) 影響細胞週期G1/S以及G2/M中的調控蛋白正常表現,干擾正常細胞週期的進行,防止癌細胞過度生長,(4) 可以減少Bcl-2, Mcl-1蛋白表現、增加Bim蛋白表現,接著活化caspase 9, caspase 3將PARP切割,促進內生性細胞凋亡路徑的進行。在腫瘤移植的動物模式中也看到MPT0G314能抑制PC3異種移植腫瘤生長,MPT0G314會活化caspase 3與增加PARP cleavage、抑制HDAC6、MEK與代償性增加Hsp70蛋白表現,這些作用與in vitro的結果相符合。最後,抗藥性的發生一直以來都是癌症治療的大難題,尤其是CRPC已被發現會藉由過度活化HDAC與Hsp90來逃避傳統化療藥物造成的細胞凋亡,因此將MPT0G314合併五種會使用在前列腺癌的傳統化療藥物,包括: irinotecan, etoposide, doxorubicin, carboplatin, and docetaxel,結果顯示以topoisomerase抑制劑irinotecan與etoposide具有最好的加乘作用,並初步證明MPT0G314與irinotecan併用能增加DNA斷裂的指標r-H2A的表現,與增加effector caspase 3、PARP cleavage、Ac-tubulin蛋白表現,並抑制EGFR, MEK, Akt蛋白表現。總結來說,新穎性HDAC與Hsp90雙重抑制劑MPT0G314在人類前列腺癌細胞中,能有效地抑制HDAC與Hsp90,並透過多條路徑促進內生性的細胞凋亡路徑,迄今尚未有HDAC/Hsp90雙重抑制劑進入臨床使用或被核准用來治療前列腺癌,因此盼望MPT0G314成為新一代的前列腺癌治療藥物。 | zh_TW |
| dc.description.abstract | Cancer is the top one leading cause of death and prostate cancer is the seventh cause of cancer-related death in Taiwan. Although androgen deprivation therapy (ADT) makes tumors under control, cancer will relapse to be castration-resistant prostate cancer (CRPC) after a median of 18-24 months. Recent data showed that the progression of CRPC was related to overexpression of HDAC and Hsp90 proteins. The purpose of this study is to evaluate the anti-cancer effects of a novel synthetic HDAC and Hsp90 dual inhibitor, MPT0G314, in prostate cancer. Our data suggested that HDAC-inhibitory effects of MPT0G314 was equal to SAHA and Hsp90-inhibitory effects of MPT0G314 was more potent than 17AAG. By fluorogenic HDAC assay kit, we found that MPT0G314 was a pan-HDAC inhibitor but demonstrated potent and selective inhibitory activity against HDAC6. MPT0G314 is 5-, 19-, 7-, and 6- folds less active against HDAC1, HDAC2, HDAC3, and HDAC8 (class I HDACs), respectively. Moreover, MPT0G314 increased HDAC6 biomarker (Ac-tubulin) with a concentration-dependent and time-dependent manner while increased p21 and AcH3 protein level at 10μM in PC3 cells. Both of enzyme kit assay and western blot assay suggested MPT0G314 has a potent and selective inhibitory activity against HDAC6. Furthermore, MPT0G314 may induces apoptosis of PC3 cells by multiple pathways, such as inhibition of Akt/mTOR pathway, inhibition of MEK/ERK pathway, regulation of G1/S and G2/M transition protein, down-regulation of Bcl-2, Mcl-1, and up-regulation of caspase9, caspase3, cleaved PARP protein expression. Interestingly, we observed that the short-term treatment of PC3 cells with MPT0G314 upregulated cleaved PARP without caspases induction. It may suggests that MPT0G314 induces cleaved PARP through a caspase-independent pathway. Moreover, MPT0G314 exhibited the tumor-inhibitory activity in PC3 xenografted models. MPT0G314 activated caspase 3, increased cleaved PARP, decreased MEK and HDAC6 in vivo. These data were consistent with in vitro results. Prostate cancer is hard to cure because multiple pathway lead to drug resistance. Our data observed the synergic effect of growth inhibition between MPT0G314 and chemoagents, especially irinotecan or etoposide. Combination of MTP0G314 and irinotecan increased DNA damage marker r-H2A expression and up-regulated caspase 3, cleaved PARP, actubulin, and downregulated EGFR, MEK, Akt protein expression. In conclusion, MPT0G314, a novel synthetic HDAC and Hsp90 dual inhibitor, potently inhibits HDAC, Hsp90 and triggers intrinsic apoptotic pathways in PC3 cells. So far, there is no HDAC and Hsp90 dual inhibitor in clinical trial or approved for prostate cancer. After further development on MPT0G314, it may be a new candidate drug of prostate cancer in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:34:18Z (GMT). No. of bitstreams: 1 ntu-103-R01443016-1.pdf: 15301656 bytes, checksum: 49af3b171117572e71edaa4549d65966 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書.........................I 致謝.........................................II 縮寫表.....................................IV 中文摘要..................................V 英文摘要.................................VII 第一章 研究動機與目的..............1 第二章 文獻回顧........................2 第三章 實驗材料與方法 第一節 實驗材料........................44 第二節 實驗方法........................46 第四章 實驗結果........................54 第五章 討論 ..............................63 第六章 結論與展望.....................74 參考文獻...................................95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 前列腺癌 | zh_TW |
| dc.subject | prostate cancer | en |
| dc.title | 探討新合成Alkylamides衍生物MPT0G314誘導細胞凋亡於人類前列腺癌細胞之體外及體內的作用機轉 | zh_TW |
| dc.title | MPT0G314, a novel synthetic alkylamides derivative, induces cell apoptosis in human prostate cancer cells in vitro and in vivo. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏茂雄(Mao-Hsiung YEN),楊春茂(Chuen-Mao Yang),黃德富(Tur-Fu Huang) | |
| dc.subject.keyword | 前列腺癌, | zh_TW |
| dc.subject.keyword | prostate cancer, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 14.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
