Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康照洲(Jaw-Jou Kang)
dc.contributor.authorYu-Wei Changen
dc.contributor.author張育葦zh_TW
dc.date.accessioned2021-06-16T06:34:01Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-04
dc.identifier.citationAbdelrahim, M., Smith, R., 3rd, and Safe, S. (2003). Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Molecular pharmacology 63, 1373-1381.
Abell, A.N., Jordan, N.V., Huang, W., Prat, A., Midland, A.A., Johnson, N.L., Granger, D.A., Mieczkowski, P.A., Perou, C.M., Gomez, S.M., et al. (2011). MAP3K4/CBP-regulated H2B acetylation controls epithelial-mesenchymal transition in trophoblast stem cells. Cell stem cell 8, 525-537.
Alamdari, N., Aversa, Z., Castillero, E., and Hasselgren, P.O. (2013). Acetylation and deacetylation--novel factors in muscle wasting. Metabolism: clinical and experimental 62, 1-11.
Anderson, G., Beischlag, T.V., Vinciguerra, M., and Mazzoccoli, G. (2013). The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochemical pharmacology 85, 1405-1416.
Apetoh, L., Quintana, F.J., Pot, C., Joller, N., Xiao, S., Kumar, D., Burns, E.J., Sherr, D.H., Weiner, H.L., and Kuchroo, V.K. (2010). The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature immunology 11, 854-861.
Atsumi, A., Tomita, A., Kiyoi, H., and Naoe, T. (2006). Histone deacetylase 3 (HDAC3) is recruited to target promoters by PML-RARalpha as a component of the N-CoR co-repressor complex to repress transcription in vivo. Biochemical and biophysical research communications 345, 1471-1480.
Baltuch, G.H., Dooley, N.P., Rostworowski, K.M., Villemure, J.G., and Yong, V.W. (1995). Protein kinase C isoform alpha overexpression in C6 glioma cells and its role in cell proliferation. Journal of neuro-oncology 24, 241-250.
Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell research 21, 381-395.
Beischlag, T.V., Luis Morales, J., Hollingshead, B.D., and Perdew, G.H. (2008). The aryl hydrocarbon receptor complex and the control of gene expression. Critical reviews in eukaryotic gene expression 18, 207-250.
Bhaskara, S., Chyla, B.J., Amann, J.M., Knutson, S.K., Cortez, D., Sun, Z.W., and Hiebert, S.W. (2008). Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Molecular cell 30, 61-72.
Blackburn, R.V., Galoforo, S.S., Berns, C.M., Motwani, N.M., Corry, P.M., and Lee, Y.J. (1998). Differential induction of cell death in human glioma cell lines by sodium nitroprusside. Cancer 82, 1137-1145.
Blaheta, R.A., and Cinatl, J., Jr. (2002). Anti-tumor mechanisms of valproate: a novel role for an old drug. Medicinal research reviews 22, 492-511.
Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature reviews Drug discovery 5, 769-784.
Bousiges, O., Neidl, R., Majchrzak, M., Muller, M.A., Barbelivien, A., Pereira de Vasconcelos, A., Schneider, A., Loeffler, J.P., Cassel, J.C., and Boutillier, A.L. (2013). Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PloS one 8, e57816.
Butler, R., Inzunza, J., Suzuki, H., Fujii-Kuriyama, Y., Warner, M., and Gustafsson, J.A. (2012). Uric acid stones in the urinary bladder of aryl hydrocarbon receptor (AhR) knockout mice. Proceedings of the National Academy of Sciences of the United States of America 109, 1122-1126.
Cesaro, P., Raiteri, E., Demoz, M., Castino, R., Baccino, F.M., Bonelli, G., and Isidoro, C. (2001). Expression of protein kinase C beta1 confers resistance to TNFalpha- and paclitaxel-induced apoptosis in HT-29 colon carcinoma cells. International journal of cancer Journal international du cancer 93, 179-184.
Chandrasekaran, S., Peterson, R.E., Mani, S.K., Addy, B., Buchholz, A.L., Xu, L., Thiyagarajan, T., Kasiganesan, H., Kern, C.B., and Menick, D.R. (2009). Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23, 3851-3864.
Chang, S., McKinsey, T.A., Zhang, C.L., Richardson, J.A., Hill, J.A., and Olson, E.N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and cellular biology 24, 8467-8476.
Chang, S., Young, B.D., Li, S., Qi, X., Richardson, J.A., and Olson, E.N. (2006). Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126, 321-334.
Dever, D.P., and Opanashuk, L.A. (2012). The aryl hydrocarbon receptor contributes to the proliferation of human medulloblastoma cells. Molecular pharmacology 81, 669-678.
DiNatale, B.C., Smith, K., John, K., Krishnegowda, G., Amin, S.G., and Perdew, G.H. (2012). Ah receptor antagonism represses head and neck tumor cell aggressive phenotype. Molecular cancer research : MCR 10, 1369-1379.
Fan, Y., Boivin, G.P., Knudsen, E.S., Nebert, D.W., Xia, Y., and Puga, A. (2010). The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer research 70, 212-220.
Fernandez-Salguero, P.M. (2010). A remarkable new target gene for the dioxin receptor: The Vav3 proto-oncogene links AhR to adhesion and migration. Cell adhesion & migration 4, 172-175.
Fukunaga, B.N., Probst, M.R., Reisz-Porszasz, S., and Hankinson, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. The Journal of biological chemistry 270, 29270-29278.
Furness, S.G., and Whelan, F. (2009). The pleiotropy of dioxin toxicity--xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles. Pharmacology & therapeutics 124, 336-353.
Garg, R., Benedetti, L.G., Abera, M.B., Wang, H., Abba, M., and Kazanietz, M.G. (2013). Protein kinase C and cancer: what we know and what we do not. Oncogene.
Garrison, P.M., Rogers, J.M., Brackney, W.R., and Denison, M.S. (2000). Effects of histone deacetylase inhibitors on the Ah receptor gene promoter. Archives of biochemistry and biophysics 374, 161-171.
Gavrielides, M.V., Frijhoff, A.F., Conti, C.J., and Kazanietz, M.G. (2004). Protein kinase C and prostate carcinogenesis: targeting the cell cycle and apoptotic mechanisms. Current drug targets 5, 431-443.
Goldstein, D.R., Cacace, A.M., and Weinstein, I.B. (1995). Overexpression of protein kinase C beta 1 in the SW480 colon cancer cell line causes growth suppression. Carcinogenesis 16, 1121-1126.
Gonzalez-Guerrico, A.M., and Kazanietz, M.G. (2005). Phorbol ester-induced apoptosis in prostate cancer cells via autocrine activation of the extrinsic apoptotic cascade: a key role for protein kinase C delta. The Journal of biological chemistry 280, 38982-38991.
Goodman, R.H., and Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes & development 14, 1553-1577.
Griner, E.M., and Kazanietz, M.G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nature reviews Cancer 7, 281-294.
Hodawadekar, S.C., and Marmorstein, R. (2007). Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26, 5528-5540.
Huang, Y., Myers, S.J., and Dingledine, R. (1999). Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature neuroscience 2, 867-872.
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., and Yao, T.P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.
Ichihara, S., Yamada, Y., Gonzalez, F.J., Nakajima, T., Murohara, T., and Ichihara, G. (2009). Inhibition of ischemia-induced angiogenesis by benzo[a]pyrene in a manner dependent on the aryl hydrocarbon receptor. Biochemical and biophysical research communications 381, 44-49.
Jackson, D., Zheng, Y., Lyo, D., Shen, Y., Nakayama, K., Nakayama, K.I., Humphries, M.J., Reyland, M.E., and Foster, D.A. (2005). Suppression of cell migration by protein kinase Cdelta. Oncogene 24, 3067-3072.
Johnstone, R.W. (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature reviews Drug discovery 1, 287-299.
Khan, O., and La Thangue, N.B. (2012). HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunology and cell biology 90, 85-94.
Knutson, S.K., Chyla, B.J., Amann, J.M., Bhaskara, S., Huppert, S.S., and Hiebert, S.W. (2008). Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. The EMBO journal 27, 1017-1028.
Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.
Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Toft, D.O., Pratt, W.B., and Yao, T.P. (2005). HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular cell 18, 601-607.
Kwon, S., Zhang, Y., and Matthias, P. (2007). The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes & development 21, 3381-3394.
La Porta, C.A., and Comolli, R. (2000). Overexpression of nPKCdelta in BL6 murine melanoma cells enhances TGFbeta1 release into the plasma of metastasized animals. Melanoma research 10, 527-534.
Lagger, G., O'Carroll, D., Rembold, M., Khier, H., Tischler, J., Weitzer, G., Schuettengruber, B., Hauser, C., Brunmeir, R., Jenuwein, T., et al. (2002). Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. The EMBO journal 21, 2672-2681.
Lahvis, G.P., Lindell, S.L., Thomas, R.S., McCuskey, R.S., Murphy, C., Glover, E., Bentz, M., Southard, J., and Bradfield, C.A. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 97, 10442-10447.
Lahvis, G.P., Pyzalski, R.W., Glover, E., Pitot, H.C., McElwee, M.K., and Bradfield, C.A. (2005). The aryl hydrocarbon receptor is required for developmental closure of the ductus venosus in the neonatal mouse. Molecular pharmacology 67, 714-720.
Li, D., Takao, T., Tsunematsu, R., Morokuma, S., Fukushima, K., Kobayashi, H., Saito, T., Furue, M., Wake, N., and Asanoma, K. (2013). Inhibition of AHR transcription by NF1C is affected by a single-nucleotide polymorphism, and is involved in suppression of human uterine endometrial cancer. Oncogene 32, 4950-4959.
Liou, G.G., Tanny, J.C., Kruger, R.G., Walz, T., and Moazed, D. (2005). Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 121, 515-527.
Ma, X.J., Wu, J., Altheim, B.A., Schultz, M.C., and Grunstein, M. (1998). Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proceedings of the National Academy of Sciences of the United States of America 95, 6693-6698.
Marks, P.A., Miller, T., and Richon, V.M. (2003). Histone deacetylases. Current opinion in pharmacology 3, 344-351.
Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294-298.
McKinsey, T.A., Zhang, C.L., Lu, J., and Olson, E.N. (2000). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106-111.
Montgomery, R.L., Davis, C.A., Potthoff, M.J., Haberland, M., Fielitz, J., Qi, X., Hill, J.A., Richardson, J.A., and Olson, E.N. (2007). Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes & development 21, 1790-1802.
Mottet, D., Bellahcene, A., Pirotte, S., Waltregny, D., Deroanne, C., Lamour, V., Lidereau, R., and Castronovo, V. (2007). Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circulation research 101, 1237-1246.
Mujtaba, S., Zeng, L., and Zhou, M.M. (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521-5527.
Mulero-Navarro, S., Carvajal-Gonzalez, J.M., Herranz, M., Ballestar, E., Fraga, M.F., Ropero, S., Esteller, M., and Fernandez-Salguero, P.M. (2006). The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis 27, 1099-1104.
Newton, A.C. (1995). Protein kinase C: structure, function, and regulation. The Journal of biological chemistry 270, 28495-28498.
Oehme, I., Deubzer, H.E., Wegener, D., Pickert, D., Linke, J.P., Hero, B., Kopp-Schneider, A., Westermann, F., Ulrich, S.M., von Deimling, A., et al. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 91-99.
Okhrimenko, H., Lu, W., Xiang, C., Hamburger, N., Kazimirsky, G., and Brodie, C. (2005). Protein kinase C-epsilon regulates the apoptosis and survival of glioma cells. Cancer research 65, 7301-7309.
Ozdag, H., Teschendorff, A.E., Ahmed, A.A., Hyland, S.J., Blenkiron, C., Bobrow, L., Veerakumarasivam, A., Burtt, G., Subkhankulova, T., Arends, M.J., et al. (2006). Differential expression of selected histone modifier genes in human solid cancers. BMC genomics 7, 90.
Pan, Q., Bao, L.W., Kleer, C.G., Sabel, M.S., Griffith, K.A., Teknos, T.N., and Merajver, S.D. (2005). Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer research 65, 8366-8371.
Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863.
Parra, M., and Verdin, E. (2010). Regulatory signal transduction pathways for class IIa histone deacetylases. Current opinion in pharmacology 10, 454-460.
Paz-Ares, L., Douillard, J.Y., Koralewski, P., Manegold, C., Smit, E.F., Reyes, J.M., Chang, G.C., John, W.J., Peterson, P.M., Obasaju, C.K., et al. (2006). Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24, 1428-1434.
Portal-Nunez, S., Shankavaram, U.T., Rao, M., Datrice, N., Atay, S., Aparicio, M., Camphausen, K.A., Fernandez-Salguero, P.M., Chang, H., Lin, P., et al. (2012). Aryl hydrocarbon receptor-induced adrenomedullin mediates cigarette smoke carcinogenicity in humans and mice. Cancer research 72, 5790-5800.
Qian, D.Z., Kachhap, S.K., Collis, S.J., Verheul, H.M., Carducci, M.A., Atadja, P., and Pili, R. (2006). Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer research 66, 8814-8821.
Quintana, F.J., and Sherr, D.H. (2013). Aryl hydrocarbon receptor control of adaptive immunity. Pharmacological reviews 65, 1148-1161.
Raduner, S., Majewska, A., Chen, J.Z., Xie, X.Q., Hamon, J., Faller, B., Altmann, K.H., and Gertsch, J. (2006). Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. The Journal of biological chemistry 281, 14192-14206.
Regel, I., Merkl, L., Friedrich, T., Burgermeister, E., Zimmermann, W., Einwachter, H., Herrmann, K., Langer, R., Rocken, C., Hofheinz, R., et al. (2012). Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to anthracyclines via induction of CITED2. Gastroenterology 143, 99-109 e110.
Rikimaru, T., Taketomi, A., Yamashita, Y., Shirabe, K., Hamatsu, T., Shimada, M., and Maehara, Y. (2007). Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology 72, 69-74.
Roy, S.S., Gonugunta, V.K., Bandyopadhyay, A., Rao, M.K., Goodall, G.J., Sun, L.Z., Tekmal, R.R., and Vadlamudi, R.K. (2013). Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene.
Saelen, M.G., Ree, A.H., Kristian, A., Fleten, K.G., Furre, T., Hektoen, H.H., and Flatmark, K. (2012). Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma. Radiation oncology 7, 165.
Safe, S., Lee, S.O., and Jin, U.H. (2013). Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicological sciences : an official journal of the Society of Toxicology 135, 1-16.
Sakuma, T., Uzawa, K., Onda, T., Shiiba, M., Yokoe, H., Shibahara, T., and Tanzawa, H. (2006). Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. International journal of oncology 29, 117-124.
Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Kiriyama, M., Fukai, I., Yamakawa, Y., and Fujii, Y. (2004). Histone deacetylase 1 mRNA expression in lung cancer. Lung cancer 46, 171-178.
Sauma, S., Yan, Z., Ohno, S., and Friedman, E. (1996). Protein kinase C beta 1 and protein kinase C beta 2 activate p57 mitogen-activated protein kinase and block differentiation in colon carcinoma cells. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 7, 587-594.
Shan, B., Yao, T.P., Nguyen, H.T., Zhuo, Y., Levy, D.R., Klingsberg, R.C., Tao, H., Palmer, M.L., Holder, K.N., and Lasky, J.A. (2008). Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. The Journal of biological chemistry 283, 21065-21073.
Singh, K.P., Garrett, R.W., Casado, F.L., and Gasiewicz, T.A. (2011). Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem cells and development 20, 769-784.
Spiegel, S., and Milstien, S. (2011). The outs and the ins of sphingosine-1-phosphate in immunity. Nature reviews Immunology 11, 403-415.
Stobbe-Maicherski, N., Wolff, S., Wolff, C., Abel, J., Sydlik, U., Frauenstein, K., and Haarmann-Stemmann, T. (2013). The interleukin-6-type cytokine oncostatin M induces aryl hydrocarbon receptor expression in a STAT3-dependent manner in human HepG2 hepatoma cells. The FEBS journal 280, 6681-6690.
Tang, J., Yan, H., and Zhuang, S. (2013). Histone deacetylases as targets for treatment of multiple diseases. Clinical science 124, 651-662.
Tian, Y. (2009). Ah receptor and NF-kappaB interplay on the stage of epigenome. Biochemical pharmacology 77, 670-680.
van Bavel, C.C., Dieker, J., Muller, S., Briand, J.P., Monestier, M., Berden, J.H., and van der Vlag, J. (2009). Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Molecular immunology 47, 511-516.
Vega, R.B., Harrison, B.C., Meadows, E., Roberts, C.R., Papst, P.J., Olson, E.N., and McKinsey, T.A. (2004a). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and cellular biology 24, 8374-8385.
Vega, R.B., Matsuda, K., Oh, J., Barbosa, A.C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J.M., Richardson, J.A., et al. (2004b). Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555-566.
Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95-104.
Vogel, C.F., Khan, E.M., Leung, P.S., Gershwin, M.E., Chang, W.L., Wu, D., Haarmann-Stemmann, T., Hoffmann, A., and Denison, M.S. (2014). Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. The Journal of biological chemistry 289, 1866-1875.
Vogel, C.F., Sciullo, E., and Matsumura, F. (2007). Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochemical and biophysical research communications 363, 722-726.
Wang, F., Wang, W., and Safe, S. (1999). Regulation of constitutive gene expression through interactions of Sp1 protein with the nuclear aryl hydrocarbon receptor complex. Biochemistry 38, 11490-11500.
Wang, L., de Zoeten, E.F., Greene, M.I., and Hancock, W.W. (2009). Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nature reviews Drug discovery 8, 969-981.
Wei, Y.D., Tepperman, K., Huang, M.Y., Sartor, M.A., and Puga, A. (2004). Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. The Journal of biological chemistry 279, 4110-4119.
Weichert, W., Roske, A., Gekeler, V., Beckers, T., Ebert, M.P., Pross, M., Dietel, M., Denkert, C., and Rocken, C. (2008a). Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. The lancet oncology 9, 139-148.
Weichert, W., Roske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Fritzsche, F.R., Niesporek, S., Denkert, C., Dietel, M., et al. (2008b). Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. British journal of cancer 98, 604-610.
Xhemalce, B., and Kouzarides, T. (2010). A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes & development 24, 647-652.
Xie, G., Peng, Z., and Raufman, J.P. (2012). Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. American journal of physiology Gastrointestinal and liver physiology 302, G1006-1015.
Yao, E.F., and Denison, M.S. (1992). DNA sequence determinants for binding of transformed Ah receptor to a dioxin-responsive enhancer. Biochemistry 31, 5060-5067.
Ye, J., Ai, X., Eugeni, E.E., Zhang, L., Carpenter, L.R., Jelinek, M.A., Freitas, M.A., and Parthun, M.R. (2005). Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly. Molecular cell 18, 123-130.
Zhang, C., Zheng, Y., Chen, L., Chen, M., Liang, S., Lin, M., and Luo, D. (2013). Regulation of basal lateral membrane mobility and permeability to divalent cations by membrane associated-protein kinase C. PloS one 8, e80291.
Zhang, J., Anastasiadis, P.Z., Liu, Y., Thompson, E.A., and Fields, A.P. (2004a). Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. The Journal of biological chemistry 279, 22118-22123.
Zhang, Z., Yamashita, H., Toyama, T., Sugiura, H., Omoto, Y., Ando, Y., Mita, K., Hamaguchi, M., Hayashi, S., and Iwase, H. (2004b). HDAC6 expression is correlated with better survival in breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 6962-6968.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57064-
dc.description.abstract組織蛋白去乙醯酶(Histone deacetylase, HDAC)為一種催化組織蛋白乙醯基去除的酵素,目前發現 HDAC家族中主要有11個成員,文獻指出HDAC 與細胞的增殖、分化、移行、血管新生、抗性有關,但是各個成員在細胞中仍扮演許多未知的角色。另一方面,研究顯示許多癌症(如:肝癌、大腸癌、血癌、皮膚癌)或是其他疾病的患者體內皆有異常的乙醯化組蛋白表現,案例中發現組織蛋白的乙醯化似乎與病況有所關連。近幾年已開發許多影響HDAC活性之藥物,如Belinostat、Trichostatin A (TSA)、Vorinostat (SAHA)等,希望藉由影響組織蛋白乙醯化程度以達到治療疾病之目的,而目前SAHA已發展成特定皮膚淋巴癌之臨床用藥。有鑑於近年來 HDAC 抑制劑的發展,本研究利用尚未發表之HDAC抑制劑AzP處理胃癌細胞株,觀察抑制HDAC後對於癌症細胞的影響,並探討可能涉及之分子機制。
  首先,依據細胞存活率實驗結果,建立往後處理組所使用AzP最高劑量為5 μM。在細胞移行實驗 (cell transwell migration assay)結果發現加入AzP處理組之細胞移行能力約為對照組的一半效果。;由西方點墨法實驗結果發現處理AzP後AGS細胞內之磷酸化之蛋白激脢Cα (protein kinase Cα, PKCα)、乙醯化組蛋白和多環芳香烴受體 (aryl hydrocarbon receptor, AhR)表現量上升。使用細胞膜萃取之實驗結果得知,AzP會增加磷酸化PKCα在膜上之分布,說明AzP會增加PKCα的活性。此外,核質分離試驗與RT-PCR實驗結果得知,AzP誘導AhR轉錄並增加AhR在細胞核中表現。由啟動子活性試驗結果得知,AzP影響AhR基因啟動子範圍約在轉錄起始位置上游250至100之間。先前研究指出,PKC的磷酸化與胞內鈣離子濃度增加有關,藉由文獻提出之結論,我們推測AzP可能影響細胞內鈣離子濃度改變而造成PKCα活化。因此,進一步藉由鈣離子通道抑制劑 NiCl2和鈣離子鏊合劑EGTA來抑制鈣離子進入胞內,觀察AzP所引起之PKCα磷酸化表現是否受到抑制,結果指出NiCl2和EGTA確實抑制AzP引起之磷酸化PKCα表現量上升現象,證實AzP是透過改變鈣離子濃度而影響PKCα。在另一方面,參考先前文獻研究結果說明PKCα會影響轉錄因子NF-κB表現,而NF-κB又扮演著AhR生成之角色,在本實驗加入NF-κB抑制劑BAY-11-7082發現AzP所誘導之AhR生成並無受到影響,說明AzP並非藉由改變NF-κB來影響AhR生合成。接著利用RNA干擾方式改變細胞內AhR表現量,以觀察AhR在表觀遺傳可能牽涉之角色,結果指出當AhR表現量下降會造成乙醯化組蛋白表現亦下降,由結果得知AhR與組蛋白乙醯化過程有關。最後,利用蛋白-蛋白交互作用試驗發現,當處理AzP後會增加AhR與組蛋白2B之間的作用,但此現象並沒有在組蛋白4中有相同結果。
  綜合上述實驗結果,證實AzP透過PKCα路徑而增加AhR轉錄發生,而增加之AhR同時涉及組蛋白乙醯化過程。但目前對於AhR影響組蛋白修飾過程之相關研究仍是十分缺乏,因此在未來這部分值得我們更深入研究。
zh_TW
dc.description.abstractHistone deacetylases (HDACs) are a class of enzymes that remove acetyl groups from histones, especially from the ε-amino group of lysine, leading the condensation of chromatin and repressing gene expression. The functions of HDACs, including migration, angiogenesis, cell differentiation, proliferation and apoptosis, have been published in many studies. It has been widely demonstrated that the abnormal acetylation of histones, causing from highly active of HDACs, would be related to many diseases, such as cancers and Rubinstein-Taybi Syndrome. In recent years, the medical developments of HDAC inhibitors are becoming common; in the view of this, we used gastric cancer cells treated a novel HDAC inhibitor, AzP, to observe the influences of this compound in vitro. In this study, the results showed that AzP increases histone acetylation and protein kinase Cα (PKCα) phosphorylation through affects sodium/calcium exchanger and raises the cytoplasmic and membrane fraction which indicates that PKCα activity increase; on the other hand, AzP induces the aryl hydrocarbon receptor (AhR) both in mRNA level and protein expression which exists in cytoplasm and nucleus. Besides, in the view of present studies, those studies indicated that PKCα would affect transcriptional factor, NF-κB, expression, and NF-κB plays a role in AhR biosynthesis. Thus, we used NF-κB inhibitor to inhibit NF-κB activity, and found that AzP-induced AhR expression was not changed, meaning that AzP did not affect AhR expression via NF-κB. Moreover, the result of promoter activity assay showed that AzP might influence the 250 to 100 bps upstream from start codon. Interestingly, we also found that repressing of AhR expression by RNA interference leads histone acetylation decreased in AzP-treated group, indicating that AhR plays a role in histone acetylation. Furthermore, the result of immunoprecipitation pointed out AzP increases protein-protein interaction between AhR and histone 2B, suggesting that AhR might has unclear functions in histone acetylation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:34:01Z (GMT). No. of bitstreams: 1
ntu-103-R01447002-1.pdf: 1868577 bytes, checksum: 576c3c4dccb2b6978dedfdaeb2c2b784 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書
致謝
圖表目錄 …………………………………………………………………………iv
中文摘要 …………………………………………………………………………vi
英文摘要 ………………………………………………………………………viii
縮寫表 ………………………………………………………………………………x
第一章、緒論 (Introduction) …………………………………………………………1
1.1. 多環芳香烴受體 (aryl hydrocarbon receptor) ……………………………………2
1.2. 組蛋白乙醯化 (Histone acetylation) …………………………………………3
1.3. 組蛋白乙醯化過程之相關酵素與複合體(Histone Acetylation-related Enzymes and Complexes) ……………………………………………………………………4
1.4. 影響HDAC功能之訊息路徑 (HDACs and signaling pathways) ……………7
1.5. HDACs與癌症關係與HDAC抑制劑之應用 (HDACs in cancers and the application of HDAC inhibitors) ……………………………………………………8
1.6. 研究動機 ………………………………………………………………………10
第二章、材料與方法 (Materials and Methods) …………………………………12
2.1. 實驗材料 …………………………………………………………………13
2.1.1. 細胞株 (Cell lines) ………………………………………………………13
2.1.2. 藥品與試劑 (Chemicals and Reagents) …………………………………13
2.1.3. 抗體 (Antibodies) ……………………………………………………………16
2.1.4. 質體 (Plasmid) ……………………………………………………………17
2.2. 方法 ………………………………………………………………………17
2.2.1. 細胞培養 (Cell culture) …………………………………………………17
2.2.2. 細胞存活率試驗 (Cell viability assay) ………………………………………17
2.2.3. 細胞移行試驗 (Cell migration assay) ……………………………………18
2.2.4. 質體萃取(Plasmid DNA purification) ………………………………18
2.2.5. 啟動子冷光酶分析法 (Promoter luciferase assay) ……………………19
2.2.6. 慢病毒製備與感染 (Lentivirus production and infection) ………………19
2.2.7. 細胞總蛋白質液收集 (Cell lysate collection) …………………………20
2.2.8. 西方墨點法 (Western blotting analysis) ………………………………20
2.2.9. 免疫沉澱法 (Immunoprecipitation) ……………………………………21
2.2.10. 細胞核質分離 (Nuclear and cytoplasmic fraction) ……………………21
2.2.11. 細胞質與細胞膜蛋白分離 (Cytoplasmic and membrane fraction) …….21
2.2.12. 細胞免疫螢光染色法 (Immunofluorescence analysis) ……………….22
2.2.13. 細胞RNA萃取 (RNA extraction) …………………………………….22
2.2.14. 反轉錄聚合酶鏈鎖反應 (RT-PCR) ……………………………………23
2.2.15. 染色體DNA萃取 (Genomic DNA extraction) …………………………24
2.2.16. 質體建構 (Plasmid construction) ……………………………………24
2.2.17. 質體轉染(Plasmid transfection) ……………………………………25
2.3. 統計分析 ……………………………………………………………….26
第三章、結果(Results) …………………………………………………………27
3.1. AzP對於胃癌細胞株之細胞存活率與細胞遷移影響 ……………………28
3.2. AzP與HDAC活性以及組蛋白表現 ………………………………………28
3.3. AzP誘導AhR表現增加 …………………………………………………29
3.4. AzP誘導之AhR在細胞質與細胞核中表現皆增加 ………………………29
3.5. AhR 啟動子活性試驗 ………………………………………………………30
3.6. AzP增加蛋白激酶Cα磷酸化 ……………………………………………31
3.7. PKCα磷酸化增加機制 ………………………………………………………31
3.8. PKCα與AhR基因轉錄之關係 ……………………………………………32
3.9. AhR表現量與組蛋白乙醯化程度 ………………………………………33
3.10. AhR與CBP和組蛋白交互作用 ……………………………………………33
第四章、討論(Discussion) ………………………………………………………34
4.1. AhR在細胞內轉錄作用機制與其影響 …………………………………35
4.2. HDAC抑制劑與PKC活化之關係 ……………………………………37
4.3. 組蛋白乙醯化位置與其功能探討 ………………………………………38
第五章、結論(Conclusion) ………………………………………………………40
參考文獻(References) ……………………………………………………………42
圖表 (Figures and Tables) ……………………………………………………………56
dc.language.isozh-TW
dc.subject蛋白激?Czh_TW
dc.subject組蛋白乙醯化zh_TW
dc.subject組蛋白去乙醯?抑制劑zh_TW
dc.subject多環芳香烴受體zh_TW
dc.subjectaryl hydrocarbon receptoren
dc.subjecthistone deacetylasesen
dc.subjecthistone acetylationen
dc.subjectProtein kinase Cen
dc.title多環芳香烴受體於組蛋白乙醯化之角色探討zh_TW
dc.titleThe Role of Aryl Hydrocarbon Receptor in Histone Acetylation.en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭幼文(Yu-Wen Cheng),李珍珍(Chen-Chen Lee)
dc.subject.keyword組蛋白去乙醯?抑制劑,多環芳香烴受體,蛋白激?C,組蛋白乙醯化,zh_TW
dc.subject.keywordhistone deacetylases,aryl hydrocarbon receptor,Protein kinase C,histone acetylation,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2014-08-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved