請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57052完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡佳醍 | |
| dc.contributor.author | Shu-Hsuan Chang | en |
| dc.contributor.author | 張書軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:33:45Z | - |
| dc.date.available | 2015-10-15 | |
| dc.date.copyright | 2014-10-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-04 | |
| dc.identifier.citation | Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, Stefansson K. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J 2006; 27:708-712.
Benjamin EJ, Levy D, Vaziriet SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 1994; 271:840-844. Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 2009; 41:879-881. Benjamin EJ, Chen PS, Bild DE, Mascette AM, Albert CM, Alonso A, et al. Prevention of Atrial Fibrillation: Report from a National Heart, Lung, and Blood Institute Workshop. Circulation 2009; 119:606-618. Christophersen IE, Ravn LS, Budtz-Joergensen E, Skytthe A, Haunsoe S, Svendsen JH, Christensen K. Familial aggregation of atrial fibrillation: a study in Danish twins. Circ Arrhythm Electrophysiol. 2009; 2:378-383. Damkjaer M, Nielsen G, Bodendiek S, Staehr M, Gramsbergen JB, de Wit C, Jensen BL, Simonsen U, Bie P, Wulff H, Kohler R. Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. Br J Pharmacol. 2012; 165:223-234. Diness JG, Sorensen US, Nissen JD, Al-Shahib B, Jespersen T, Grunnet M, et al. Inhibition of Small-Conductance Ca2+-Activated K+ Channels Terminates and Protects Against Atrial Fibrillation. Circ Arrhythm Electrophysiol 2010; 3:380-390. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 2010; 42:240-244. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006; 114:e257-e354. Fox CS, Parise H, D’Agostino RB, Lloyd-Jones DM, Vasan RS, Wang TJ, et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 2004; 291:2851-2855. Grunnet M, Bentzen BH, Sorensen US, Diness JG. Cardiac ion channels and mechanisms for protection against atrial fibrillation. Rev Physiol Biochem Pharmacol 2012; 162:1-58. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 2007; 448:353-357. Hasenau AL, Nielsen G, Morisseau C, Hammock BD, Wulff H, Kohler R. Improvement of endothelium-dependent vasodilations by SKA-31and SKA-20, activators of small- and intermediate-conductance Ca2+ -activated K+ -channels. Acta Physiol 2011; 203:117-126. Hsueh CH, Chang PC, Hsieh YC, et al. Proarrhythmic effect ofblocking the small conductance calcium activated potassium channel in isolated canine left atrium. Heart Rhythm 2013; 10:891-898. Kaab S, Darbar D, van Noord C, Dupuis J, Pfeufer A, Newton-Cheh C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J 2009; 30:813-819. Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiologic features of chronic atrial fibrillation: The Framingham study. N Engl J Med 1982; 306:1018-1022. Lahri DK, Nurnberger JI Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19:5444. Lee KT, Yeh HY, Tung CP, Chu CS, Cheng KH, Tsai WC, et al. Association of RS2200733 but Not RS10033464 on 4q25 with Atrial Fibrillation Based on the Recessive Model in a Taiwanese Population. Cardiology 2010; 116:151-156. Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, et al. Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet 2011; 129:239-246. Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, et al. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 2009; 587:1087-1100. Lu L, Zhang Q, Timofeyev V, Zhang Z, Young JN, Shin HS, Knowlton AA, Chiamvimonvat N. Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ Res 2007; 100:112-120 Lubitz SA, Ozcan C, Magnani JW, Kaab S, Benjamin EJ, Ellinor PT. Genetics of Atrial Fibrillation: Implications for Future Research Directions and Personalized Medicine. Circ Arrhythm Electrophysiol 2010; 3:291-299. Nattel S. Calcium-activated potassium current: a novel ion channel candidate in atrial fibrillation. J Physiol 2009; 587:1385-1386. Ozgen N, Dun W, Sosunov EA, Anyukhovsky EP, Hirose M, Duffy HS, et al. Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc Res 2007; 4:758-769. Parajuli SP, Soder RP, Hristov KL, Petkov GV. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility. J Pharmacol Exp Ther 2012; 340:114-123. Pedarzani P, McCutcheon JE, Rogge G, et al. Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current IAHP and modulates the firing properties of hippocampal pyramidal neurons. J Biol Chem 2005; 280:41404-41411. Roden DM. Taking the idio out of idiosyncratic: predicting torsades de pointes. Pacing Clin Electrophysiol 1998; 21:1029-1034. Ruo B, Capra AM, Jensvold NG, Go AS. Racial variation in the prevalence of atrial fibrillation among patients with heart failure. J Am Coll Cardiol 2004; 43:429-435. Tsai CT, Lai LP, Hwang JJ, Lin JL, Chiang FT. Molecular genetics of atrial fibrillation. J Am Coll Cardiol 2008; 52:241-250. Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, et al. Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 2005; 289:H2714-2723. Tuteja D, Rafizadeh S, Timofeyev V, et al. Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 2010; 107:851-859. Shi L, Li C, Wang C, Xia Y, Wu G, Wang F, et al. Assessment of association of rs2200733 on chromosome 4q25 with atrial fibrillation and ischemic stroke in a Chinese Han population. Hum Genet 2009; 126:843-849. Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer Z et al. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a New Activator of KCa2 and KCa3.1 Potassium Channels, Potentiates the Endothelium-Derived Hyperpolarizing Factor Response and Lowers Blood Pressure. Mol Pharmacol 2009; 75:281-295. Soder RP, Parajuli SP, Hristov KL, Rovner ES, Petkov GV. SK channel-selective opening by SKA-31 induces hyperpolarization and decreases contractility in human urinary bladder smooth muscle. Am J Physiol Regul Integr Comp Physiol 2013; 304:R155-R163. Weatherall KL, Goodchild SJ, Jane DE, Marrion NV. Small conductance calcium-activated potassium channels: from structure to function. Prog Neurobiol 2010; 91:242-255. Xu Y, Tuteja D, Zhang Z, et al. Molecular identification and functional roles of a Ca2+-activated K+ channnel in human and mouse hearts. J Biol Chem 2003; 278:49085-49094. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57052 | - |
| dc.description.abstract | 直到過去幾年,有越來越多的流行病學的證據顯示,心房顫動(atrial fibrillation)是可以遺傳的。在2010年,一個以歐洲人為對象的全基因組關聯研究(genome-wide association study)指出,染色體1q21上的KCNN3基因的單核苷酸多型性(single nucleotide polymorphism)rs13376333與心房顫動風險有顯著的關聯。KCNN3基因編碼小電導鈣離子激活鉀離子通道(small conductance Ca2+-activated K+ channels)(也被稱為SK3通道)。直到最近才有報告指出,SK通道與心肌細胞,主要是心房細胞,的動作電位持續期間的再極化有關,研究顯示,SK通道的抑制與心房顫動的抑制與產生可能都有關係,雖然這些研究的結果有衝突,卻也指出SK通道在心房顫動產生的機制上可能扮演重要的角色,其詳細的機轉仍待進一步釐清。
我們的研究有兩部分。首先,我們試圖探討在台灣人身上,KCNN3基因的單核苷酸多型性rs13376333和心房顫動之間有無顯著關聯。 我們在214位孤立性心房顫動病人與214對照組病人,和322位結構性心房顫動病人與322對照組病人身上,進行了一個病例對照關聯研究 我們的研究顯示,在台灣人,單核苷酸多型性rs13376333和心房顫動(包括孤立性與結構性)亦有顯著關聯。我們發現在結構性心房顫動病人,單核苷酸多型性rs13376333的風險對偶基因T的頻率是6.5%,對照組病人是3.1% [對偶基因(allele)P= 0.004,勝算比= 2.18,95%信賴區間:1.23-3.96;基因型(genotype)P=0.012]。在孤立性心房顫動病人,單核苷酸多型性rs13376333的風險對偶基因T的頻率是8.6%,對照組病人是3.0%(對偶基因P< 0.001,勝算比= 3.02,95%信賴區間:1.54-6.29;基因型P= 0.001)。 第二部分,我們試圖探討以藥物活化SK通道對心臟電氣生理的影響。 我們以大鼠做體內(in vivo)心臟電氣生理實驗,包括計劃性的電生理刺激(programmed electrophysiological pacing)和心房顫動的誘發,藉由施打SK通道的活化劑-SKA-31,評估心房電氣生理的變化,並研究SK通道功能的活化是否會影響心房顫動或導致其他心律不整的產生。 我們的實驗發現,施打SK通道的活化劑-SKA-31會明顯縮短心房的動作電位持續期(action potential duration)(74.6 ms ± 2.8 ms VS. 70.8 ms ± 2.2 ms,P= 0.02),但此效果只是短暫的,心房的有效不反應(effective refractory period)則無顯著改變(73.5 ms ± 1.9 ms VS. 71.4 ms ± 2.4 ms,P= 0.1)。施打SK通道的活化劑-SKA-31後,心房顫動維持的時間會延長(1.8 s ± 0.5 s VS. 2.9 s ± 1.2 s,P= 0.035)。另外,我們也並未觀察到有任何心室的律不整的產生。 | zh_TW |
| dc.description.abstract | During the last few years a growing number of epidemiologic evidence has indicated that atrial fibrillation(AF)is heritable. In 2010, a genome-wide association study in individuals of European ancestry demonstrated a significant association of the single nucleotide polymorphism(SNP)rs13376333 in KCNN3 on chromosome 1q21 with AF. The KCNN3 gene codes for voltage-independent small conductance Ca2+-activated K+ channels(also known as SK3). Recently, several reports have shown that SK channels are associated with action potential duration of cardiomyocytes, especially atrial myocytes. Some studies demonstrated that pharmacological inhibition or blockade of SK channels is associated with inhibition or promotion of atrial fibrillation. Although these results are conflicting, they reveal that SK channels may play an important role on the mechanism of atrial fibrillation.
Our study has two parts. First, we plan to investigate whether this association between SNP rs13376333 and AF also exists in Taiwanese subjects. We performed a case-control association study of 214 subjects with lone AF vs. 214 controls, and 322 subjects with structural AF vs. 322 controls for SNP rs13376333 on chromosome 1q21. We found significant allele and genotype associations between SNP rs13376333 and both structural and lone AF. In patients with structural AF, the frequency of the risk allele T of SNP rs13376333 was 6.5% compared with 3.1% in unaffected controls(allele P= 0.004, OR, 2.18, 95%CI: 1.23–3.96; genotype P= 0.012). In the lone AF group, the frequency of the risk allele T of SNP rs13376333 was 8.6% compared with 3.0% in unaffected controls(allele P< 0.001, OR, 3.02; 95%CI: 1.54–6.29; genotype P= 0.001). Second, we planed to assess the effect of pharmacological activation of SK channels on cardiac electrophysiology. In rat in vivo model, we performed electrophysiological studies, including programmed electrophysiological pacing and AF induction. After administrations of SK channels activaotor-SKA-31, we evaluated the changes of atrial action potential duration(APD)and atrial effective refractory period(ERP)and studied whether pharmacological activation of SK channels had effect on AF duration and induced ventricular arrhythmias. After injections of SKA-31, we found that atrial APD shortened significantly(74.6 ms ± 2.8 ms VS. 70.8 ms ± 2.2 ms,P= 0.02), but this effect was only transient, and atrial ERP didn’t change significantly(73.5 ms ± 1.9 ms VS. 71.4 ms ± 2.4 ms,P= 0.1). The duration of AF increased significantly after SKA-31 injections(1.8 s ± 0.5 s VS. 2.9 s ± 1.2 s,P= 0.035). Besides, we didn’t observe any ventricular arrhythmias after SKA-31 injections. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:33:45Z (GMT). No. of bitstreams: 1 ntu-103-P00421011-1.pdf: 596821 bytes, checksum: 5d8ee14b23df83241c0307f11199f507 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………… i
誌謝……………………………………………………………ii 中文摘要………………………………………………………iii 英文摘要……………………………………………………… v 第一章、緒論…………………………………………………01 第二章、研究方法與材料……………………………………07 第三章、結果…………………………………………………11 第四章、討論…………………………………………………14 第五章、展望…………………………………………………19 第六章、論文英文簡述………………………………………21 第七章、參考文獻……………………………………………23 第八章、圖表 圖一……………………………………………………………28 圖二……………………………………………………………29 表一……………………………………………………………30 表二……………………………………………………………32 表三……………………………………………………………34 表四……………………………………………………………35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心房顫動 | zh_TW |
| dc.subject | 遺傳學 | zh_TW |
| dc.subject | 單核?酸多型性 | zh_TW |
| dc.subject | 小電導鈣離子激活鉀離子通道 | zh_TW |
| dc.subject | 電氣生理研究 | zh_TW |
| dc.subject | electrophysiological study | en |
| dc.subject | genetics | en |
| dc.subject | single nucleotide polymorphism | en |
| dc.subject | atrial fibrillation | en |
| dc.subject | small conductance Ca2+-activated K+ channels | en |
| dc.title | 小電導鈣激活鉀通道和心房顫動的關連 | zh_TW |
| dc.title | Association of small-conductance Ca2+-activated K+ (SK) channels and atrial fibrillation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林俊立,楊偉勛,徐國基 | |
| dc.subject.keyword | 心房顫動,遺傳學,單核?酸多型性,小電導鈣離子激活鉀離子通道,電氣生理研究, | zh_TW |
| dc.subject.keyword | atrial fibrillation,genetics,single nucleotide polymorphism,small conductance Ca2+-activated K+ channels,electrophysiological study, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 582.83 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
