請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | Chen-Hung Tsai | en |
| dc.contributor.author | 蔡鎮鴻 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:33:33Z | - |
| dc.date.available | 2016-08-12 | |
| dc.date.copyright | 2014-08-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-04 | |
| dc.identifier.citation | 1. Y. W. Cheng, K. M. Pan, C. Y. Wang, H. H. Chen, M. Y. Ke, C. P. Chen, et al., 'Enhanced light collection of GaN light emitting devices by redirecting the lateral emission using nanorod reflectors,' Nanotechnology, vol. 20, p. 035202, Jan 21 2009.
2. A. l. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, et al., 'Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,' Applied Physics Letters, vol. 88, p. 061124, 2006. 3. E. Matioli, M. Iza, Y.-S. Choi, F. Wu, S. Keller, H. Masui, et al., 'GaN-based embedded 2D photonic crystal LEDs: Numerical optimization and device characterization,' physica status solidi (c), vol. 6, pp. S675-S679, 2009. 4. E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, et al., 'High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,' Applied Physics Letters, vol. 96, p. 031108, 2010. 5. E. Matioli and C. Weisbuch, 'Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs,' Journal of Physics D: Applied Physics, vol. 43, p. 354005, 2010. 6. Y. W. Cheng, S. C.Wang,. Y. F. Yin,L. Y. Su, J. J. Huang, 'GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling,'Optics letters 2011, 36 (9), 1611-1613 7. Y. W. Cheng, K. M. Pan, Chen, M. Y. Ke, C. P. Chen, C. C. Yang, J. J. Huang, Characterizations of GaN-Based LEDs encompassed with self-aligned nanorod arrays of various distribution densities. Electron Device Letters, IEEE, vol. 30,p.1060,2009 8. J. J. Wierer, A. David, and M. M. Megens, 'III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,' Nature Photonics, vol. 3, pp. 163-169, 2009. 9. C.-H. Chiu, D.-W. Lin, Z.-Y. Li, C.-H. Chiu, C.-L. Chao, C.-C. Tu, et al., 'Improvement in Crystalline Quality of InGaN-Based Epilayer on Sapphire via Nanoscaled Epitaxial Lateral Overgrowth,' Japanese Journal of Applied Physics, vol. 49, p. 105501, 2010. 10. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, et al., 'Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,' Applied Physics Letters, vol. 93, p. 081108, 2008 11. J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, et al., 'Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,' Sci Rep, vol. 3, p. 3201, 2013. 12. J. Yang, T.-W. Liu, C.-W. Hsu, L.-C. Chen, K.-H. Chen, and C.-C. Chen, 'Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition,' Nanotechnology, vol. 17, pp. S321-S326, 2006. 13. L. Yu, Y. Lv, X. Zhang, Y. Zhang, R. Zou, and F. Zhang, 'Vapor–liquid–solid growth route to AlN nanowires on Au-coated Si substrate by direct nitridation of Al powder,' Journal of Crystal Growth, vol. 334, pp. 57-61, 2011. 14. Anupama B. Kaul, Microelectronics to Nanoelectronics: Materials, Devices & Manufacturability, August 24, 2012 by CRC Press. 15. T. Massalski, J. Murray, B. Lawrence, B. Hugh, (eds.), ‘Binary Alloy Phase Diagram’, American Society for Metals, Metals Park, Ohio, 1986, 1, 90, 260, 270 16. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, “Epitaxial lateral overgrowth techniques used in group III nitride Epitaxy”, Phys. Status Solidi A 176, 535,1999 17. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, “Enhancing the output power of GaN-Based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonic Technology Letters, vol. 18, NO. 10, MAY 15, 2006 18. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, et al., 'Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,' Applied Physics Letters, vol. 89, p. 161105, 2006. 19. C.Y. Cho, M.K. Kwon, I.K. Park, S.H. Hong, J.J. Kim, S.E. Park, S.T. Kim, S.J. Park, “High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask,” Optics Express, Vol. 19, No. S4, 2011. 20. C.-H. Chiu, P.-M. Tu, S.-P. Chang, C.-C. Lin, C.-Y. Jang, Z.-Y. Li, et al., 'Light Output Enhancement of GaN-Based Light-Emitting Diodes by Optimizing SiO2 Nanorod-Array Depth Patterned Sapphire Substrate,' Japanese Journal of Applied Physics, vol. 51, p. 04DG11, 2012. 1. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, et al., 'Loss-free and active optical negative-index metamaterials,' Nature, vol. 466, pp. 735-8, Aug 5 2010. 2. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, 'A single-layer wide-angle negative-index metamaterial at visible frequencies,' Nat Mater, vol. 9, pp. 407-12, May 2010. 3. S. C. Wang, Y. W. Cheng, Y.F. Yin, L.Y. Chen, L.Y. Su, Y.J. Hung, et al., 'Interactions of Diffraction Modes Contributed From Surface Photonic Crystals and Nanoholes in a GaN-Based Light-Emitting Diode'. J. Lightwave Technol., vol. 29, 3772-3776. 2011 4. S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, et al., 'Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells,' Journal of Applied Physics, vol. 100, p. 054314, 2006. 5. W J. J. Wierer, A. David, and M. M. Megens, 'III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,' Nature Photonics, vol. 3, pp. 163-169, 2009. 6. E. Rangel, E. Matioli, Y.-S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, 'Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,' Applied Physics Letters, vol. 98, p. 081104, 2011. 1. S. Nakamura, S. Masayuki, S. Nagahama, N. Iwasa, T. Yamada, et al., “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., vol. 72, pp. 211-213, 1998. 2. C.-H. Chiu, P.-M. Tu, S.-P. Chang, C.-C. Lin, C.-Y. Jang, Z.-Y. Li, et al., 'Light Output Enhancement of GaN-Based Light-Emitting Diodes by Optimizing SiO2 Nanorod-Array Depth Patterned Sapphire Substrate,' Japanese Journal of Applied Physics, vol. 51, p. 04DG11, 2012. 3. S.-C. Ling, C.-L. Chao, J.-R. Chen, P.-C. Liu, T.-S. Ko, T.-C. Lu, et al., 'Nanorod epitaxial lateral overgrowth of a-plane GaN with low dislocation density,' Applied Physics Letters, vol. 94, p. 251912, 2009. 4. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, et al., 'Fabrication of Pyramidal Patterned Sapphire Substrates for High-Efficiency InGaN-Based Light Emitting Diodes,' Journal of The Electrochemical Society, vol. 153, p. G765, 2006. 5. D. G. Zhao, D. S. Jiang, H. Yang, J. J. Zhu, Z. S. Liu, S. M. Zhang, et al., 'Role of edge dislocations in enhancing the yellow luminescence of n-type GaN,' Applied Physics Letters, vol. 88, p. 241917, 2006. 6. E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, 'Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,' Applied Physics Letters, vol. 84, p. 535, 2004. 7. C.-H. Chiu, D.-W. Lin, Z.-Y. Li, C.-H. Chiu, C.-L. Chao, C.-C. Tu, et al., 'Improvement in Crystalline Quality of InGaN-Based Epilayer on Sapphire via Nanoscaled Epitaxial Lateral Overgrowth,' Japanese Journal of Applied Physics, vol. 49, p. 105501, 2010. 8. P. Puech, F. o. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, et al., 'GaN nanoindentation: A micro-Raman spectroscopy study of local strain fields,' Journal of Applied Physics, vol. 96, p. 2853, 2004. 9. Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, 'GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,' Journal of Crystal Growth, vol. 272, pp. 327-332, 2004. 10. T. Kawashima, T. Nagai, D. Iida, A. Miura, Y. Okadome, Y. Tsuchiya, et al., 'Epitaxial lateral growth of m-plane GaN and Al0.18Ga0.82N on m-plane 4H-SiC and 6H-SiC substrates,' Journal of Crystal Growth, vol. 298, pp. 261-264, 2007. 11. J. Abell and T. D. Moustakas, 'The role of dislocations as nonradiative recombination centers in InGaN quantum wells,' Applied Physics Letters, vol. 92, p. 091901, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57043 | - |
| dc.description.abstract | 論文包含兩個部分,首先是光子晶體奈米洞陣列對發光二極體出光特性影響的研究,第二部分則是利用高溫爐管在藍寶石基板上成長氮化鋁奈米柱層作為氮化鎵磊晶的緩衝層,使磊晶過程中有側向磊晶生長作用。
在氮化鎵發光二極體中,利用二維光子晶體於作為繞射光柵以增加出光效率,近年來已經是相當普遍的做法。多數研究為了避免破壞多層量子井,光子晶體僅製作於表面。我們在整個元件的表面都製作了奈米洞陣列(週期與半徑分別為400及140奈米),並蝕刻穿過多重量子井。因此可將具有高能量的低階模態與光子晶體耦合而萃取出半導體表面。在這樣的結構中,TM模態相較於TE模態,和光子晶體的繞射作用更為明顯,使得TM模態的出光角度在14度的地方有最大值,而另一個極值則位於32.5度。反而TE模態,其發光場型較為發散。在本章中,我們利用模態萃取出光,以及光子晶體造成的繞射,解釋不同模態發光場型的不同。 另一方面,使用有機金屬化學氣相沉積在藍寶石基板上做氮化鎵發光二極體 磊晶是當今主流的做法。但是因為兩種材料間晶格常數(13%)以及熱膨脹係數(62%)的差異,使得氮化鎵磊晶層有大量的貫穿式差排。為了改善氮化鎵的磊晶品質,我們利用氣-液-固機制在藍寶石基板表面成長氮化鋁奈米柱層,使氮化鎵有側向磊晶生長的效果。從(002)搖擺曲線半高寬可知成長於奈米柱層的氮化鎵磊晶品質均較一般成長於藍寶石基板的為佳。拉曼光譜則可發現氮化鎵磊晶層相較於成長在藍寶石基板,成長於氮化鋁奈米柱層的應力從1.25 GPa下降至0.78 GPa。從穿透式電子顯微鏡影像發現貫穿式差排的密度確實減少,並於奈米柱層上方產生疊層缺陷可用於阻擋貫穿式差排。最後量測變溫光致螢光發現成長於氮化鋁奈米柱上的多重量子井內部量子效率提升了12.2%。 | zh_TW |
| dc.description.abstract | The thesis consist of two parts. First of all, we studied in the effects of photonic crystal nanohole arrays on light output properties of LEDs. Second, we used the high temperature tube furnace to grow AlN nanorod template. It acts as buffer layers between GaN epilayers and sapphire substrate and comes out with the epitaxial lateral overgrowth process.
In recent years, using photonic crystals (PhCs) in GaN LEDs as optical diffraction grating is a reliable way for improving light extraction. Generally, most researches utilized shallow PhCs in order not to damage the MQWs. Despite reducing the surface defects, the low-order modes could not couple with PhCs effectively and be extracted. We fabricated the LED, of which the entire mesa covered by PhC nanohole array with lattice constant of 400 nm, radius of 140 nm and etching through the MQWs layer. In this structure, the diffraction by PhCs in TM modes is effective than in TE modes, causing TM polarized light to congregate at 14° (another peak intensity is at 32.5°). Compared with conventional planar LED, the radiation profile of TE mode is much wider. In this chapter, we introduce two mechanisms, vertically guided mode extraction and laterally propagating light diffraction by PhCs, to explain the difference of radiation with polarization. Besides, typically, GaN epilayers are grown on a planar sapphire substrate by metal-organic chemical vapor deposition (MOCVD). However, GaN epilayers suffer from a high threading dislocation density due to their large lattice mismatch (13%) and thermal expansion coefficient misfit (62%). The AlN nanorod templates were grown on sapphire substrate by VLS mechanism and have the effect of lateral epitaxial to improve the crystalline quality of GaN epilayers. The FWHM of (002) XRD rocking curve represent that the samples with the templates have higher crystal quality. It is found that the residual stress was reduced from 1.25 to 0.78 GPa in the GaN epitaxial layer by inserting the AlN nanorod templates. The TEM images reveal lower dislocation density in GaN epilayers on AlN nanorod template and the stacking fault on the templates can block the threading dislocation. Moreover, the internal quantum efficiency of MQWs is enhanced by 12.2% compare to reference sample. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:33:33Z (GMT). No. of bitstreams: 1 ntu-103-R01941021-1.pdf: 3000839 bytes, checksum: 372a48b7f03f0c9725282b49c1cfc19c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Preface 1 1.2 Research motivation 2 Chapter 2 Literature review 4 2.1 Basic of light extraction by PhC gratings 4 2.2 VLS (Vapor-Liquid-Solid) mechanism 7 2.3 Epitaxial lateral overgrowth of GaN 9 2.4 Reference 11 Chapter 3 Extraction Properties of Nanohole Array LEDs 14 3.1 Preface 14 3.2 Details of devices fabrication and measurement 14 3.2.1 InGaN/GaN multiple quantum well 14 3.2.2 Designing photonic crystal patterns 16 3.2.3 Fabrication process of planar LED 18 3.2.4 Fabrication process of PhC LED 19 3.2.5 The method of measurement 21 3.3 Result and discussion 22 3.3.1 Electrical properties and light output 22 3.3.2 Spontaneous emission control 23 3.3.3 The two mechanisms of light extraction 25 3.4 Conclusion 30 3.5 Reference 31 Chapter 4 Improved GaN epitaxial quality with AlN nanorod templates 32 4.1 Preface 32 4.2 Experiment process 33 4.2.1 Fabrication process of AlN nanorod templates 33 4.2.2 Fabrication process of GaN epilayer grown on AlN nanorod templates 34 4.3 Results and discussion 36 4.3.1 Different conditions for fabricated AlN nanorod templates 36 4.3.2 AlN nanorod templates for GaN epitaxial growth 41 4.4 Conclusion 54 4.5 Reference 55 Chapter 5 Conclusion 57 | |
| dc.language.iso | en | |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 側向磊晶生長 | zh_TW |
| dc.subject | 奈米柱層 | zh_TW |
| dc.subject | 氮化鋁 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 奈米洞陣列 | zh_TW |
| dc.subject | Nanorod templates | en |
| dc.subject | Epitaxial lateral overgrowth | en |
| dc.subject | GaN | en |
| dc.subject | Nanohole arrays | en |
| dc.subject | AlN | en |
| dc.subject | Light-emitting diode(LED) | en |
| dc.subject | Photonic crystal (PhC) | en |
| dc.title | 光子晶體陣列與氮化鋁奈米柱層於發光二極體之研究 | zh_TW |
| dc.title | The Study of Photonic Crystal Arrays and AlN Nanorod Templates on GaN-based Light-emitting Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,吳育任,賴韋志 | |
| dc.subject.keyword | 光子晶體,氮化鎵,奈米洞陣列,氮化鋁,奈米柱層,側向磊晶生長,發光二極體, | zh_TW |
| dc.subject.keyword | Photonic crystal (PhC),GaN,Nanohole arrays,AlN,Nanorod templates,Epitaxial lateral overgrowth,Light-emitting diode(LED), | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
