Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃奎隆(Kwei-Long Huang)
dc.contributor.authorYi-He Liuen
dc.contributor.author劉奕和zh_TW
dc.date.accessioned2021-06-16T06:32:48Z-
dc.date.available2020-07-28
dc.date.copyright2020-07-28
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citation1. Peter, G., Rebeka, L. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875-1885.
2. International Energy Outlook 2019 (#IEO2019). Washington, DC: U.S. Energy Information Administration.
3. Baines, T., Steve, B., Ornella, B., Peter, B. (2012). Examining green production and its role within the competitive strategy of manufacturers. Journal of Industrial Engineering and Management, 5(1), 53-87.
4. Zheng, X. L., Wang, L. (2018). A Collaborative Multiobjective Fruit Fly Optimization Algorithm for the Resource Constrained Unrelated Parallel Machine Green Scheduling Problem. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, 48(5), 790-800.
5. Johnson, S. M., (1954). OPTIMAL TWO- AND THREE-STAGE PRODUCTION SCHEDULES WITH SETUP TIMES INCLUDED. Naval Research Logistics Quarterly, 1(1), 61-68.
6. Ignall, E., Schrage, L. (1965). Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems. Operations Research, 13(3), 400-412.
7. Willem, J. S., David, D. H. (1986) A Mixed-Integer Goal-Programming Formulation of the Standard Flow-Shop Scheduling Problem. Journal of the Operational Research Society, 37(12), 1121-1128.
8. Chen, C. L., Vempati, V. S., Aljaber, N. (1995) An application of genetic algorithms for flow shop problems. European Journal of Operational Research, 80(2), 389-396.
9. Christian, G., Florian, D., Martin, D., Axel, T. (2016) Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757.
10. Che, A., Zhang, S., Wu, X., (2017) Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs. Journal of Cleaner Production, 156(10), 688-697.
11. Tan, M., Duan, B., Su, Y., (2018) Economic batch sizing and scheduling on parallel machines under time-of-use electricity pricing. Operational Research, 18(1), 105-122.
12. Jose, B. A., Katie, M., Ruben, P., (2019) Energy cost minimization for unrelated parallel machine scheduling under real time and demand charge pricing. Journal of Cleaner Production, 208(20), 688-697.
13. Sven, S. (2016) A Multi-criteria MILP Formulation for Energy Aware Hybrid Flow Shop Scheduling. Operations Research Proceeding 2016, 543-549.
14. Zhao, S., Ignacio, E. G., Tang, L., (2018) Integrated scheduling of rolling sector in steel production with consideration of energy consumption under time-of-use electricity prices. Computers and Chemical Engineering, 111(4), 55-65.
15. Bruzzone, A., Anghinolfi, D., Paolucci, M., Tonelli, (2012) Energy-aware scheduling for improving manufacturing process sustainability: a mathematical model for flexible flow shops. CIRP Annals - Manufacturing Technology, 61(1), 459-462.
16. Xu, F., Weng, W., Fuhimura, S., (2014) Energy-Efficient Scheduling for Flexible Flow Shops by Using MIP. In IIE Annual Conference and Expo 2014 (pp. 1040-1048). Institute of Industrial Engineers.
17. Fang, K. T., Lin, M. T., (2012) Parallel-machine scheduling to minimize tardiness penalty and power cost. Computer Industrial Engineering , 64(1), 224-234.
18. Mansouri, S. A., Aktas, E., Besikci, U., (2016) Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788.
19. Lu, C., Gao, L., Li, X., Pan, Q., Wang, Q., (2017) Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144(15), 228-238.
20. Zeng, Z., Hong, M., Yi, M., Li, J., Zhang, Y., Liu, H., (2018) Multi-object optimization of flexible flow shop scheduling with batch process – Consideration total electricity consumption and material wastage. Journal of Cleaner Production, 183(10), 925-939.
21. Jiang, T., Deng, G., (2018) Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem Considering Energy Consumption. IEEE Access, 6, 46346-46355.
22. Cakici, E., Mason, S. J., (2007) Parallel machine scheduling subject to auxiliary resource constraints. Production Planning Control, 18(3), 217-225.
23. Bitar, A., Stéphane, D. P., Yugma C. Roussel , R. (2016) A memetic algorithm to solve an unrelated parallel machine scheduling problem with auxiliary resources in semiconductor manufacturing. Journal of Scheduling, 19(4), 367-376.
24. Kuo, H. A., Chien, C. F., Using Auxiliary Capacity Planning Strategy Genetic Algorithm for TFT-LCD photolithography Scheduling to empower Industry 3.5*. Expert Systems with Applications, 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, 2018, pp. 920-925.
25. Wu, J. Z., Chien, C. F., (2008) Modeling semiconductor testing job scheduling and dynamic testing machine configuration. Expert Systems with Applications, 35(1-2), 485-496.
26. Cheng, T. C. E., Lin, B. M. T., Huang, H. L. (2012) Resource-constrained flowshop scheduling with separate resource recycling operations. Computer Operations Research , 39(6), 1206-1212.
27. Li, J., Duan, P. , Sang, H., Wang, S., Liu, Z., Duan, P. (2018) An Efficient Optimization Algorithm for Resource-Constrained Steelmaking Scheduling Problems. IEEE Access , 6, 33883-33894.
28. Umbarkar, A. J., Sheth, P. D. (2015) Crossover Operations in Genetic Algorithms: A Review. ICTACT Journal on Soft Computing, 6(1), 1083-1092.
29. Tsai, J., T., Liu, T., K., Chou, J., H. (2004) Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 8(4), 365-377.
30. Babaei, M., Mohammadi, M., Ghomi, F., Sobhavallahi, M. (2012) Two Parameter-Tuned Metaheuristic Algorithms for the Multi-level Lot Sizing and Scheduling Problem. International Journal of Industrial Engineering Computations, 3, 751-766.
31. Fallahi, M., Amiri, S., Yaghini, M. (2014) A Parameter Tuning Methodology for Metaheuristics Based on Design of Experiments. International Journal of Engineering and Technology sciences, 2(6), 497-521.
32. Cooray, P., L., N., U., Rupasinghe, T., D. (2017) Machine Learning-Based Parameter Tuned Genetic Algorithm for Energy Minimizing Vehicle Routing Problem. Journal of Industrial Engineering 2017.
33. Zennaki, M., Ech-Cherif, A. (2010) A New Machine Learning based Approach for Metaheuristics for the Solution of Hard Combinatorial Optimization Problems. Journal of Applied Sciences, 10(18), 1991-2000.
34. Wang, H. K., Chien, C. F., Mitsuo G. (2015) An Algorithm of Multi-Subpopulation Parameters With Hybrid Estimation of Distribution for Semiconductor Scheduling With Constrained Waiting Time. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 28(3), 353-366.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57006-
dc.description.abstract隨著全球環保意識抬頭,綠色生產(Green Production)的議題逐漸受到重視,因此結合能源消耗與生產排程之研究勢必成為未來之趨勢。而實務上許多製程皆須搭配特定輔具資源協助生產,如鑄造產業製作外沙箱之輔具鐵斗、半導體產業微影製程之輔具光罩等,若未將輔具資源等因素考慮至排程作業中,常會導致生產排程績效不佳。目前大多數研究僅針對個別議題進行探討,並未同時考量能源消耗與輔具資源搭配之整合問題,若能同時有效整合此兩種議題,將可使生產排程規劃更有效率,並達到降低能耗成本之目的。
本研究探討不同工件需搭配不同輔具資源綁定生產,且各生產輔具皆有其相對應之能源消耗量,在滿足各生產時間點總能源消耗量之限制下,如何以最佳輔具資源配對,解決流線型工廠之生產排程問題如工件等待特定輔具資源釋放導致機台被迫閒置,或工件選擇能源消耗量高之輔具生產導致生產成本提高等議題。故本研究提出以基因演算法為基結合混整數線性規劃模型之兩階段啟發式演算法(GABTSO),並以最小化總完工時間與加權總能源消耗成本為目標求得品質優良的排程最適解。而在基因演算法的部分,本研究亦提出一演算法參數最佳化之機器學習模型,僅需告知期望排程之生產情況如工件數、輔具數等資訊,該模型即會自動輸出最佳之基因演算法參數設置以獲得最佳之求解效果。
本研究數值分析將四個探討因子包含(1)工件數、(2)輔具數、(3)能耗峰值限制與(4)能源成本等,分別設定不同之水準數形成共24種情境,探討不同因子水準對於GABTSO求解之影響,並藉數值分析結果提供相關之策略建議。最後並以國內大型鑄造廠實際資料為範例進行實務驗證,將最適生產排程規劃提供給公司管理階層,以作為決策時之考量依據,藉以提升公司之競爭力。
zh_TW
dc.description.abstractSome manufacturing processes can only be performed when machines and the corresponding auxiliary resources are simultaneously available. Particularly, with the characteristics where the auxiliary resources and jobs are many-to-many correspondence. In addition, when job is assigned with different types of auxiliary, the energy consumption may vary accordingly. To promote the green production and to reduce cost, joining assignment of auxiliary resources with reduction of energy consumption is investigated.
We propose a two-stage heuristic algorithm which adopts the machine learning parameter optimization based genetic algorithm combined with a linear programming model to solve the flow-shop scheduling problem with requirement of auxiliary resources and energy consumption. Once an auxiliary tool is assigned to a job, that tool can’t be released until the job completes the operations those need the auxiliary tool. Jobs and auxiliary tools are many-to-many correspondence, and each auxiliary tool has different energy consumption. Every time point of the scheduling period has different energy consumption peak and energy cost. The objective of the problem is to determine a production scheduling that minimizes the weighted makespan and the total energy consumption cost under all of above constraints.
This study conducted numerical analysis to analyze how the four discussion factors include 1. Job, 2. Auxiliary, 3. Energy Peak, 4. Energy Cost to affect our heuristic algorithm and give some management insight based on numerical result. Lastly, a real scheduling problem will be used to verify the effect of this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:32:48Z (GMT). No. of bitstreams: 1
U0001-2307202011004500.pdf: 5255509 bytes, checksum: 649cb479c0250201348be8b986e5f92d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 綠色生產 1
1.2 輔具資源綁定 2
1.3 研究背景與動機 3
1.4 研究目的與架構 4
第二章 文獻探討 6
2.1 流線型生產排程問題 6
2.2 能耗考量排程問題 7
2.3 資源限制排程問題 9
2.4 基因演算法 10
2.5 演算法參數最佳化 16
第三章 問題描述與研究方法 19
3.1 問題描述 19
3.2 問題基本假設與限制 23
3.3 研究方法 24
第四章 兩階段啟發式演算法 26
4.1 基因演算法 26
4.2 演算法參數最佳化模型 32
4.3 混合整數線性規劃模型 40
4.4 小範例實際應用 46
第五章 數值分析與實例驗證 56
5.1 情境設計與參數說明 56
5.2 實驗結果與策略建議 59
5.3 實務排程案例驗證 68
第六章 結論 79
6.1 研究總結 79
6.2 未來展望 80
參考文獻 82
附錄一 數值分析因子工件相關參數 86
附錄二 數值分析因子輔具相關參數 87
附錄三 數值分析因子能耗峰值限制與能源成本參數 88
附錄四 實務範例驗證工件相關參數 89
附錄五 實務範例驗證輔具相關參數 90
附錄六 實務範例驗證耗電峰值限制與電價成本參數 91
dc.language.isozh-TW
dc.subject混整數線性規劃zh_TW
dc.subject機器學習zh_TW
dc.subject基因演算法zh_TW
dc.subject輔具資源綁定zh_TW
dc.subject綠色生產排程zh_TW
dc.subjectGreen Schedulingen
dc.subjectAuxiliary Resource Bindingen
dc.subjectGenetic Algorithmen
dc.subjectMixed Integer Linear Programmingen
dc.subjectMachine Learningen
dc.title整合能源消耗與製程輔具資源綁定之流線型生產排程研究
zh_TW
dc.titleFlow-Shop Scheduling with Consideration of Energy Consumption and Auxiliary Resource Binding
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳政翰(Gen-Han Wu),范治民(Chih-Min Fan)
dc.subject.keyword綠色生產排程,輔具資源綁定,基因演算法,混整數線性規劃,機器學習,zh_TW
dc.subject.keywordGreen Scheduling,Auxiliary Resource Binding,Genetic Algorithm,Mixed Integer Linear Programming,Machine Learning,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202001763
dc.rights.note有償授權
dc.date.accepted2020-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2307202011004500.pdf
  未授權公開取用
5.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved