請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56990完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
| dc.contributor.author | Ching-Hui Lu | en |
| dc.contributor.author | 呂靖慧 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:32:30Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | 1. 'Cancer'.World Health Organization. Feburary 2014. [online].
2. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer, 2006. 6(9): p. 674-87. 3. Leslie H. Sobin , M.K.G., Christian Wittekind TNM Classification of Malignant Tumours, 7th Edition. Wiley-Blackwell, 2009. 4. Cabibbo, G., et al., Multimodal approaches to the treatment of hepatocellular carcinoma. Nat Clin Pract Gastroenterol Hepatol, 2009. 6(3): p. 159-69. 5. Duffy, J.P., et al., Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Ann Surg, 2007. 246(3): p. 502-9; discussion 509-11. 6. Li, X.W.a.Y., Signaling Pathways in Liver Cancer. Liver Tumors, February, 2012: p. 37-58. 7. Chan, S.L. and W. Yeo, Targeted therapy of hepatocellular carcinoma: present and future. Journal of Gastroenterology and Hepatology, 2012. 27(5): p. 862-72. 8. Villanueva, A. and J.M. Llovet, Targeted therapies for hepatocellular carcinoma. Gastroenterology, 2011. 140(5): p. 1410-26. 9. Santoro, G.M.K.a.A., Sorafenib A Review of its Use in Advanced Hepatocellular Carcinoma. Drugs, 2009. 69(2): p. 223-240. 10. Chaparro, M., et al., Review article: pharmacological therapy for hepatocellular carcinoma with sorafenib and other oral agents. Aliment Pharmacol Ther, 2008. 28(11-12): p. 1269-77. 11. Josep M. Llovet, e.a., Sorafenib in Advanced Hepatocellular Carcinoma. The New England Journal of Medicine, 2008. 359: p. 378-390. 12. Ann-Lii Cheng, e.a., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The lancet oncology, January 2009. 10(1): p. 25-34. 13. Zunino, L.G.a.F., Overview of tumor cell chemoresistance mechanisms. Methods in Molecular Medicine, 2005. 111: p. 127-148. 14. Hristos Glavinas, P.K., Judit Cserepes and Balazs Sarkadi, The Role of ABC Transporters in Drug Resistance, Metabolism and Toxicity. Current Drug Delivery, 2004. 16: p. 27-42. 15. Townsend, D.M. and K.D. Tew, The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 2003. 22(47): p. 7369-75. 16. Raguz, S. and E. Yague, Resistance to chemotherapy: new treatments and novel insights into an old problem. British Journal of Cancer 2008. 99(3): p. 387-91. 17. Song G, O.G., Bao S., The activation of Akt/PKB signaling pathway and cell survival. Journal of Cellular and Molecular Medicine 2005. 9: p. 59-71. 18. Portt, L., et al., Anti-apoptosis and cell survival: a review. Biochim Biophys Acta, 2011. 1813(1): p. 238-59. 19. Chen, K.F., et al., Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. Journal of Pharmacology and Experimental Therapeutics, 2011. 337(1): p. 155-61. 20. Tai, W.T., et al., Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Molecular Cancer Therapeutics, 2012. 11(2): p. 452-63. 21. van Malenstein, H., et al., Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett, 2013. 329(1): p. 74-83. 22. Torti, D. and L. Trusolino, Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med, 2011. 3(11): p. 623-36. 23. Kullander, K. and R. Klein, Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol, 2002. 3(7): p. 475-86. 24. Zhou, R., The eph family receptors and ligands. Pharmacology and Therapeutics, 1998. 77(3): p. 151-181. 25. Pasquale, E.B., Eph-ephrin bidirectional signaling in physiology and disease. Cell, 2008. 133(1): p. 38-52. 26. Dravis, C., Ephs, Ephrins, and Bidirectional Signaling. . Nature Education, 2010. 3(9): p. 22. 27. Pasquale, E.B., Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Reviews Cancer, 2010. 10(3): p. 165-80. 28. Pasquale, E.B., 'Eph receptor signal transduction in cancer biology and neurobiology'. Sanfordburnham.org [Online]. 29. Daniel P. Zelinski, N.D.Z., Jane C. Stewart, Armando R. Irizarry, and Michael S. Kinch, Epha2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Research, 2001. 61: p. 2301-2306. 30. Tandon, M., S.V. Vemula, and S.K. Mittal, Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets, 2011. 15(1): p. 31-51. 31. Chen, D.M.B.-S.a.J., Eph receptor tyrosine kinases in angiogenesis: From development to disease. Angiogenesis, 2004. 7: p. 17-28. 32. Miao, H., et al., EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell, 2009. 16(1): p. 9-20. 33. Hui Miao, E.B., Michael Kinch, Erin Simon and Bingcheng Wang, Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biology, 2000. 2: p. 62-69. 34. Duxbury, M.S., et al., Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun, 2004. 320(4): p. 1096-102. 35. Paul, T.-C.C.a.T., Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation 1984. 22: p. 27-55. 36. B. P. L. Wijnhoven, W.N.M.D.a.M.P., E-cadherin-catenin cell-cell adhesion complex and human cancer. British Journal of Surgery, 2002. 87(8): p. 992-1005. 37. Satelli, A. and S. Li, Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences, 2011. 68(18): p. 3033-46. 38. Li, X., et al., Up-regulation of EphA2 and down-regulation of EphrinA1 are associated with the aggressive phenotype and poor prognosis of malignant glioma. Tumour Biol, 2010. 31(5): p. 477-88. 39. Chen, P., et al., EphA2 enhances the proliferation and invasion ability of LNCaP prostate cancer cells. Oncology Letters, 2014. 8(1): p. 41-46. 40. Yang, N.Y., et al., Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell Signal, 2011. 23(1): p. 201-12. 41. Walker-Daniels J, R.D.n., Kinch MS., c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Molecular Cancer Research, 2002. 1: p. 79-87. 42. Lu, X.S., et al., Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology 2013. 42(6): p. 2103-15. 43. McLean, G.W., et al., The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nature Reviews Cancer, 2005. 5(7): p. 505-15. 44. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol, 2005. 6(1): p. 56-68. 45. Musgrove, E.A., et al., Cyclin D as a therapeutic target in cancer. Nature Reviews Cancer, 2011. 11(8): p. 558-72. 46. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-310. 47. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90. 48. Sinha, D., et al., Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. The Journal of Biological Chemistry, 2004. 279(12): p. 10962-72. 49. Larsen, A.B., et al., Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res, 2007. 5(3): p. 283-93. 50. Chang, Q., et al., Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. British Journal of Cancer 2008. 99(7): p. 1074-82. 51. Noberini, R., et al., Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors. The Journal of Biological Chemistry, 2008. 283(43): p. 29461-72. 52. Petty, A., et al., A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS One, 2012. 7(8): p. e42120. 53. Jehle, J., et al., Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. British Journal of Pharmacology, 2012. 167(7): p. 1563-72. 54. Bruckheimer EM, F.C., Gallagher S, Mulgrew K, Fuhrmann S, Coffman KT, Walsh W, Ready S, Cook K, Damschroder M, Kinch M, Kiener PA, Woods R, Gao C, Dall'Acqua W, Wu H, Coats S., Antibody-dependent cell-mediated cytotoxicity effector-enhanced epha2 agonist monoclonal antibody demonstrates potent activity against human tumors. Neoplasia, 2009. 11(6): p. 509-517. 55. Noblitt, L.W., et al., Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther, 2004. 11(11): p. 757-66. 56. Koolpe, M., M. Dail, and E.B. Pasquale, An ephrin mimetic peptide that selectively targets the EphA2 receptor. The Journal of Biological Chemistry, 2002. 277(49): p. 46974-9. 57. J R Curtis, F.J.A.B., Use of prazosin in management of hypertension in patients with chronic renal failure and in renal transplant recipients. British Medical journal, 1975. 4: p. 432-434. 58. Lin, S.-C., et al., Prazosin Displays Anticancer Activity against Human Prostate Cancers: Targeting DNA, Cell Cycle. Neoplasia, 2007. 9(10): p. 830-839. 59. Yang, Y.F., et al., Prazosin induces p53-mediated autophagic cell death in H9C2 cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011. 384(2): p. 209-16. 60. Curtis R. Chong, D.J.S., Jr, New uses for old drugs. Nature, 2007. 445: p. 645-646. 61. Kuen-Feng Chen, H.-C.Y., Tsung-Hao Liu, Shoei-Sheng Lee, Pei-Jer Chen, Ann-Lii Cheng, Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. Journal of Hepatology, 2010. 52(1): p. 88-95. 62. Caccia, D., et al., Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Molecular Cancer, 2010. 9: p. 278. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56990 | - |
| dc.description.abstract | 肝細胞癌是最常見的肝癌,常見的成因有病毒感染,過量飲酒以及肝硬化引發肝癌。癌症末期常常發現病患預後不良以及腫瘤轉移,整體存活期少於八個月。蕾莎瓦為肝細胞癌末期唯一核可使用的標靶藥物,能抑制細胞中酪胺酸激酶的活性,達到抑制癌細胞的功用,但臨床使用結果顯示不到10%的病患在用藥後還能有良好的效果,原因是癌細胞對於蕾莎瓦產生抗藥性。
為了解決蕾莎瓦抗藥性的問題,本實驗室建立了在蕾莎瓦長期篩選後所得到的Huh7抗藥性細胞株 (Huh7R),發現其細胞移動以及侵襲能力相較於Huh7細胞株高,顯示其細胞轉移能力強。進一步利用差異蛋白質體學分析 (Stable Isotope Labeling by Amino acids in Cell Culture,SLIAC),發現酪氨酸激酶EphA2受體在Huh7R細胞中表現量顯著高於Huh7細胞。已知EphA2與癌症發生和轉移有關,將EphA2基因降低發現Huh7R失去移動和侵襲能力。進一步用定量磷酸化蛋白質體學分析,發現EphA2受體在Ser 897位置絲氨酸的磷酸化顯著高於Huh7。並由文獻搜尋發現此磷酸化位置和Akt激酶的活性呈正相關。 我們推測抗藥性的產生是由於EphA2受體的過度表現。為了要解決這個問題,本實驗室篩選出Compound A,並發現Huh7R在加入Compound A可以抑制EphA2 受體Ser 897和Akt Ser 473的磷酸化,並引起細胞凋亡。另外發現Compound A可以藉由降低FAK/Paxillin的活性抑制細胞移動能力。為了進一步了解Compound A和蕾莎瓦合併使用是否效率更高,利用細胞存活實驗發現Compound A可以增加細胞對蕾莎瓦感受性,此外合併使用兩種藥物可以顯著減弱細胞移動和侵襲能力。另外利用西方墨點法,我們發現Compound A和蕾莎瓦單獨使用對EphA2受體和FAK/Paxillin有抑制效果,經由合併使用下抑制現象更顯著。並且這個現象在活化Caspase 3和抑制Cyclin D1上也有相同趨勢。此外,合併使用兩種藥物可以顯著提升細胞凋亡以及抑制細胞群落形成。從以上結果我們發現合併使用Compound A與蕾莎瓦可以抑制EphA2受體訊號傳遞,並且提升Huh7R對蕾莎瓦的感受性。 未來我們將會以Compound A為先導化合物,去尋找更有效且更專一能抑制EphA2受體活性的小分子藥物,並且期望能夠找到更合適的化合物來解決抗藥性難題。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Hepatocarcinogenesis is linked tightly to viral infection, alcoholic liver disease, and hepatic cirrhosis. Advanced HCC is a metastatic and poorly prognosis disease. The overall survival rate of advanced HCC patient is shorter than 8 months. Sorafenib is a small molecule drug which targets multi-kinases. Evidences showed that sorafenib can improve the survival of patient with advanced HCC. However, more and more clinical studies showed that most patients who received sorafenib therapy eventually resulted in drug resistant to sorafenib.
To understand the mechanism of drug resistance, our lab established a sorafenib-resistant cell line, Huh7R, from Huh7 cells (HCC cell line) by long-term exposure to sorafenib. We found that the markers of cell migration and invasion such as E-cadherin and β-catenin were decreased and vimentin was increased in Huh7R, which indicated that sorafenib resistant cells tend to metastasis. By proteomic analysis, we also found that EphA2 is overexpression in sorafenib resistant cells both in vitro and in vivo. It has been reported that Eph receptor A2 (EphA2) was linked to tumor initiation and metastatic progression. After knockdown EphA2 in Huh7R, we found that cells loss ability to migration. We further used quantitative phosphoproteomic approach to compare Huh7 and Huh7R cells. We found that EphA2 Ser 897 phosphorylation was significant higher in Huh7R. It has been shown that high level of EphA2 Ser 897 phosphorylation is correlated with Akt activation and associated with cancer development. We hypothesize that EphA2 up-regulation is involved in acquired resistance to sorafenib in Huh7 R cell. In order to inhibit EphA2 activity, we screened several compounds to block EphA2 activity. The compound A had the best inhibitory effect to EphA2 S897 phosphorylation. We found that compound A inhibited Akt S473 phosphorylation and induced cell apoptosis. In addition, cell migration ability and FAK/Paxillin activity was decreased in compound A treatment. To further examine the efficiency of combined treatment to overcome drug resistance, Huh7R were treated with Compound A and sorafenib. By cell viability assay, we found that the Huh7R cells are more sensitive to sorafenib in combined treatment with compound A. Furthermore, combined treatment also reduced cell migration and invasion ability. Western blotting indicated that sorafenib and compound A individually inhibited phosphorylation of EphA2 and FAK/Paxillin, whereas the combined treatment significantly inhibited the phosphorylation of EphA2 and FAK/Paxillin in Huh7R cell. In addition, cleavage form caspase 3 was increased and cyclin D1 was decreased in combined treatment. Similarly, the cell apoptosis percentage was 41% and 23% by compound A and sorafenib, and by 56% by the combined treatment. In conclusion, combined treatment compound A and sorafenib can increase Huh7R cell sensitivity to sorafenib by inhibiting EphA2 signaling pathway. In the future, we will further investigate new compounds by using compound A as a lead compound and examine the anti-cancer effect in HCC model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:30Z (GMT). No. of bitstreams: 1 ntu-103-R01442021-1.pdf: 2607575 bytes, checksum: 1f39bc9dc4dab2c69aaf435828de77e2 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 摘要 III Abstract V 縮寫 VIII 第一章 導論 1 第一節 肝癌 1 1.1 肝癌的流行病學 1 1.2 肝癌腫瘤的分期 1 1.3 肝癌的治療方法 2 1.4 蕾莎瓦的作用機轉以及療效 4 第二節 癌症標靶藥物的後天抗藥性 5 2.1 藥物抗藥性的機轉 5 2.2 蕾莎瓦的抗藥性 6 第三節 Eph receptor A2與癌症的關係 7 3.1 Eph receptor family 7 3.2 Eph receptor A2 8 第四節 研究動機 10 第二章 實驗材料 11 第一節 肝癌細胞株 11 第二節 藥品 11 第三節 試劑組 12 第四節 抗體 12 第五節 重要儀器裝置 14 第三章 實驗方法 15 第一節 肝細胞癌細胞株的培養 15 1.1 培養基 (medium) 的配置 15 1.2 細胞的培養 15 1.3 細胞的計數 15 第二節 細胞存活率分析 (MTT assay) 15 2.1 MTT reagent 配置 16 2.2 細胞準備 16 2.3 細胞存活率偵測 16 2.4 藥物共同作用參數計算 (Combination index) 16 第三節 蛋白質分析法 17 3.1 蛋白質濃度測定(660nm protein assay) 17 3.2 十二烷基磺酸鈉-聚丙烯醯胺膠電泳法 (Sodium dodecyl sulfate -polyacrylamide gel electrophoresis, SDS-PAGE ) 17 3.3 西方墨點法(Western blotting) 20 第四節 螢光染色 (fluorescent staining) 21 4.1 免疫螢光染色 (immunofluorescence cell staining) 21 4.2 赫斯特染色法 (Hoechst staining) 22 第五節 細胞群落形成實驗 (Colony formation assay) 23 第六節 細胞傷口癒合實驗 (Wound healing assay) 23 第七節 細胞侵襲實驗 (Transwell assay) 23 7.1 實驗配置 23 7.2 細胞侵襲能力偵測 24 第四章 實驗結果 25 第一節 Huh7與Huh7R細胞之間的藥物靈敏度及外型差異比較 25 第二節 Huh7與Huh7R細胞蛋白質表現差異 25 第三節 Huh7與Huh7R細胞移動侵襲之能力 25 3.1 移動標誌蛋白在Huh7與Huh7R細胞表現量差異 25 3.2 抑制EphA2表現後之功能性分析 26 第四節 EphA2與Akt訊號傳遞的交互作用 26 第五節 尋找對EphA2有抑制效果的小分子藥物 27 第六節 Prazosin抑制EphA2後之功能性分析 27 6.1 探討Prazosin引發細胞凋亡的機制 27 6.2 Prazosin減少EphA2在細胞膜上的表現量 28 6.3 Prazosin影響Huh7R的細胞移動能力透過抑制FAK訊息傳導路徑 28 第七節 藥物共同處理之功能性分析 29 7.1 Prazosin對於蕾莎瓦的藥效有加強效果 29 7.2 Prazosin與蕾莎瓦的藥物共同作用參數計算 29 7.3 藥物共同使用加強細胞凋亡和抑制細胞增生 30 7.4 藥物共同使用對於訊號傳遞路徑的影響 30 7.5 藥物共同使用加強抑制細胞移動以及細胞侵襲的能力 31 第五章 討論 32 第一節 肝癌細胞的抗藥性 32 第二節 EphA2作為抗癌藥物目標的應用 32 第三節 Prazosin 34 第四節 蕾莎瓦與Prazosin在共同使用的效果 35 第五節 研究結語與未來展望 36 第六章 參考文獻 37 圖 46 附錄 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | EphA2受體 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | Akt激? | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 蕾莎瓦 | zh_TW |
| dc.subject | Sorafenib | en |
| dc.subject | Drug resistance | en |
| dc.subject | EphA2 | en |
| dc.subject | Akt | en |
| dc.subject | Hepatocellular carcinoma | en |
| dc.title | 探討肝腫瘤細胞中酪胺酸激酶EphA2受體升高對於蕾莎瓦抗藥性之影響 | zh_TW |
| dc.title | To study the elevation of receptor tyrosine kinase EphA2 mediates acquired resistance to sorafenib in Huh7 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧記華(Jih-Hwa Guh),黃楓婷(Feng-Ting Huang) | |
| dc.subject.keyword | 蕾莎瓦,抗藥性,EphA2受體,Akt激?,肝細胞癌, | zh_TW |
| dc.subject.keyword | Sorafenib,Drug resistance,EphA2,Akt,Hepatocellular carcinoma, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
